【研究意义】随着经济的持续发展,我国土壤退化问题日益严重,主要表现为土壤硬化、盐碱化、酸化、化学污染和侵蚀等,严重限制了土壤的生产力[1]。对于南方稻田而言,酸化土壤的改良是众多学者的热议话题之一。化学氮肥的长期使用导致土壤酸化[2-4],而土壤酸化活化了重金属元素,对土壤肥力质量、健康质量和农产品质量安全带来一定的负面影响[2,5]。因此,土壤酸化和重金属污染治理已成为现代农业发展中迫切需要解决的重要课题。【前人研究进展】近年来,为适应新时代农业发展理念,土壤改良剂产品的研发得到迅速发展并广泛应用于退化土壤的改良,取得了一系列研究成果,特别是对于我国沙化土壤、盐碱地、石灰性土壤的改良效果显著,大大提高了旱地作物的产量。研究表明,土壤改良剂能有效地改善土壤理化性状[6-8],修复重金属污染的土壤和有效降低农产品中重金属含量[9-11],并对土壤微生物产生积极影响[6,12],从而提高土壤的生产力[13-15]。陈丽娜[16]研究表明,土壤改良剂能够增加风沙地土壤有机质含量,对小麦生长十分有利,能够调节土壤pH值,增强土壤肥力,促进小麦增产。董亮等[17]、秦萍等[18]研究发现,施用土壤改良剂可以优化土壤团粒结构,降低土壤容重及土壤盐分含量,增加土壤有机质含量,有效改良盐渍化土壤,提高作物产量。湛润生等[19]研究认为,硫磺作为一种新型的土壤改良剂,应用于我国干旱和半干旱地区的石灰性土壤,不但能降低土壤的pH值,改善土壤的理化性状,同时能活化土壤养分,从而提高土壤中有效养分的含量,促进作物的生长和发育,降低作物体NO3--N积累。【本研究切入点】关于土壤改良剂的报道多是应用于旱地土壤,促进旱地作物增产,但在我国南方红壤酸性稻田生产上的应用较少[7,15],尤其是化肥配施不同用量土壤改良剂对双季稻产量形成和经济效益的影响还鲜见报道。【拟解决的关键问题】通过大田试验,研究化肥配施土壤改良剂对我国南方红壤酸性稻田早、晚稻产量及其构成因素、水稻经济效益和土壤化学性质的影响,以期为双季水稻生产大面积推广应用土壤改良剂提供科学依据和技术指导。
试验于2018年在江西省进贤县温圳镇杨溪村进行。供试土壤为第四纪红色粘土发育的水稻土,常年种植水稻。试验前耕作层(0~20 cm)土壤基本性质为:有机质 26.8 g/kg、碱解氮 114.2 mg/kg、有效磷(P2O5)25.6 mg/kg、速效钾(K2O)98.1 mg/kg,土壤CEC 13.1 cmol/kg,pH 5.1。土壤改良剂主要成分与含量分别为SiO2≥60%、CEC≥10 cmol/kg、S≤4.0%,pH6.8,由香港三谷集团有限公司提供。供试品种:早稻为中嘉早17,晚稻为H优518。供试化肥为尿素(N 46%)、钙镁磷肥(含 P2O5 11.4%)、氯化钾(含K2O 60%)。
早稻、晚稻试验在同一块田进行,设8个处理:常量施肥(100%F);常量施肥,每季分别增施土壤改良剂150、300、450 kg/hm2(分别用G1+100%F、G2+100%F、G3+100%F表示);每季减施25%常量施肥,分别增施土壤改良剂150、300、450、600 kg/hm2(分别用G1-25%F、G2-25%F、G3-25%F、G4-25%F表示)。常量施肥处理,早稻施纯N 150 kg/hm2、P2O5 75 kg/hm2、K2O 150 kg/hm2,晚稻施纯N 180 kg/hm2、P2O5 90 kg/hm2、K2O 180 kg/hm2。各处理早稻氮肥、钾肥均按基肥、分蘖肥与穗肥质量比5∶2∶3施用。晚稻氮肥按基肥、分蘖肥与穗肥质量比4∶2∶4施用,钾肥按基肥、分蘖肥与穗肥质量比5∶2∶3施用。磷肥和土壤改良剂作基肥一次性施用。试验小区随机区组排列,3次重复,小区面积24 m2。小区间土埂用塑料薄膜包裹,单排单灌。人工移栽,栽插密度早稻为13.3 cm×23.3 cm,晚稻为16.7 cm×23.3 cm,早稻每蔸3谷粒苗,晚稻每蔸2谷粒苗。其他按常规高产栽培要求进行。
早稻、晚稻收割前1 d,各处理在调查有效穗数的基础上按平均数法取5蔸进行考种。各处理实割200蔸,脱粒后晒干、称重、测产。同时,在晚稻成熟期,每个处理按五点法取耕作层(0~20 cm)土壤样品以供土壤养分含量、CEC和pH值测定。土壤养分、CEC和pH均按常规分析法[15]测定。
试验数据运用Excel 2007和SPSS16.0软件进行处理和统计分析,采用Duncan新复极差法(LSR)进行差异显著性检验。
由表1可知,常量施肥条件下,增施土壤改良剂有利于提高早稻、晚稻产量,其产量增幅随改良剂用量增加而增加。早稻产量处理间差异不显著,而晚稻产量G1+100%F、G2+100%F、G3+100%F处理间差异不显著,但均显著高于100%F处理,增幅为4.0%~5.6%。说明常量施肥条件下,增施土壤改良剂有利于提高双季水稻年总产量,且以增施450 kg/hm2土壤改良剂效果最好。
减施25%化肥条件下,早稻、晚稻产量均以G4-25%F处理最高,但与其他处理差异不显著。早稻产量G1-25%F、G2-25%F、G3-25%F处理均低于常量施肥对应的G1+100%F、G2+100%F、G3+100%F处理,但处理间差异不显著。而晚稻产量则均显著低于常量施肥对应的处理,降幅为4.3%~6.5%,其降幅随土壤改良剂用量增加呈下降趋势。说明减施25%化肥条件下,增施土壤改良剂600 kg/hm2可以维持早稻、晚稻获得高产。
表1 不同处理对水稻产量及其构成因素的影响
Table 1 Effects of different treatments on rice yield and its components
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant differences.
产量Yield (kg/hm2)早稻 100%F 344.6b 136.5a 70.6d 26.7a 8677.5a Early rice G1+100%F 347.9b 132.1a 74.4c 27.1a 8722.2a G2+100%F 370.4a 122.3b 80.4b 27.2a 8766.9a G3+100%F 363.9a 124.4b 84.1a 27.2a 8945.9a G1-25% F 338.1b 137.9a 74.8c 26.3a 8588.0a G2-25% F 347.9b 128.6b 80.8b 26.4a 8588.0a G3-25% F 341.4b 138.8a 81.3ab 26.8a 8722.2a G4-25% F 347.9b 133.7a 81.9ab 26.9a 8945.9a晚稻 100%F 380.1a 117.3a 83.4b 25.5a 9147.9b Late rice G1+100%F 383.4a 118.7a 84.6b 25.6a 9511.2a G2+100%F 385.8a 113.5a 86.2ab 25.7a 9546.0a G3+100%F 386.3a 115.5a 88.2a 25.7a 9655.8a G1-25% F 368.4b 112.2a 86.3ab 25.5a 8896.7b G2-25% F 370.1b 116.5a 87.2ab 25.7a 9079.7b G3-25% F 368.0b 113.2a 88.2a 25.7a 9236.3b G4-25% F 362.4b 118.2a 90.1a 25.8a 9392.4ab季别Season处理Treatment有效穗数Number of grains per panicle(104/hm2)穗粒数Number of effective spike结实率Seed setting rate (%)千粒质量Thousand-grain weight(g)
产量构成因素(表1)中,常量施肥条件下,早稻单位面积有效穗数G3+100%F处理与G2+100%F处理差异不显著,但均显著高于G1+100%F、100%F处理,而G1+100%F处理和100%F处理差异不显著。晚稻4个处理间差异不显著;减施25%化肥条件下,施用改良剂对早、晚稻单位面积有效穗数影响较小,处理间差异不显著;各处理早稻每穗粒数变化规律不明显,而晚稻处理间差异不显著;早稻、晚稻结实率均随土壤改良剂用量的增加而增加。常量施肥水平下,早稻结实率G1+100%F、G2+100%F、G3+100%F处理较100%F处理增幅达5.5%~19.1%,且差异显著。而晚稻结实率G3+100%F处理与G2+100%F处理差异不显著,但显著高于G1+100%F、100%F处理,增幅为4.3%和5.8%,而G1+100%F处理和100%F处理差异不显著。减施25%化肥条件下,早稻结实率增施土壤改良剂的处理较100%F处理增幅达5.9%~16.0 %,且差异显著;而晚稻结实率以G4-25%F处理为最高,较100%F处理增幅8.0%,且差异显著;早稻、晚稻千粒重处理间差异不显著。说明施用土壤改良剂有利于促进水稻籽粒灌浆,提高其结实率,从而提高水稻产量。这可能与土壤改良剂中含有大量的硅素营养有关,其作用机理还有待进一步研究。
从表2可以看出,稻谷产值的变化趋势与产量变化基本一致,随土壤改良剂用量增加基本呈增加的趋势。早稻稻谷产值以G3+100%F、G4-25%F处理最高,达2.15万元/hm2,但处理间差异不显著。晚稻稻谷产值以G3+100%F处理最高,较100%F处理增加5.2%,且差异显著。其他增施土壤改良剂的处理与100%F处理差异不显著。稻草产值处理间差异不显著。早稻净收益处理间差异不显著。晚稻净收益常量施肥增施土壤改良剂的处理间差异不显著,但均显著高于100%F处理,平均增幅为4.8%。减施25%化肥的处理晚稻净收益与100%F处理差异不显著,但均低于常量施肥增施土壤改良剂的处理。产投比早稻以G1-25%F处理最好,晚稻以 G1+100%F处理最好。从净收益和产投比来看,早稻减施25%化肥、配施150 kg/hm2土壤改良剂和晚稻常量施肥、配施150 kg/hm2土壤改良剂有利于提高周年水稻种植的经济效益。
表2 经济效益分析(万元/hm2)
Table 2 Analysis of economic benefits(104 yuan/hm2)
注:早稻、晚稻稻谷分别按2.4、2.52元/kg计算;稻草、尿素、钙镁磷肥、氯化钾、土壤改良剂分别按0.3、2.6、0.80、3.45、2.0元/kg计算;其他成本包括劳动力成本、农资成本(农药、种子、机械及灌溉等)。同列数据后小写英文字母不同者表示差异显著。
Note: The costs of early rice and late rice grains are 2.4 and 2.52 yuan/kg, respectively; the costs of straw, urea, calcium magnesium phosphate fertilizer, potassium chloride and soil amendments are 0.3, 2.6, 0.80, 3.45, 2.0 yuan/kg, respectively; and other costs include labor costs and agricultural material costs (pesticide, seeds,machinery, irrigation and etc.). Different lowercase letters in the same column represent significant differences.
产投比Output to input ratio早稻 100%F 2.08a 0.26 0.22 0.00 0.90 1.22a 2.09 Early riceG1+100%F 2.09a 0.26 0.22 0.03 0.90 1.20a 2.04 G2+100%F 2.10a 0.26 0.22 0.06 0.90 1.18a 2.00 G3+100%F 2.15a 0.27 0.22 0.09 0.90 1.21a 2.00 G1-25% F 2.06a 0.26 0.17 0.03 0.90 1.22a 2.11 G2-25% F 2.06a 0.26 0.17 0.06 0.90 1.19a 2.05 G3-25% F 2.09a 0.26 0.17 0.09 0.90 1.19a 2.03 G4-25% F 2.15a 0.27 0.17 0.12 0.90 1.23a 2.03晚稻 100%F 2.31b 0.27 0.27 0.00 0.98 1.33b 2.06 Late rice G1+100%F 2.40ab 0.29 0.27 0.03 0.98 1.41a 2.10 G2+100%F 2.41ab 0.29 0.27 0.06 0.98 1.39a 2.06 G3+100%F 2.43a 0.29 0.27 0.09 0.98 1.38a 2.03 G1-25% F 2.24b 0.27 0.20 0.03 0.98 1.30b 2.07 G2-25% F 2.29b 0.27 0.20 0.06 0.98 1.32b 2.06 G3-25% F 2.33b 0.28 0.20 0.09 0.98 1.34ab 2.06 G4-25% F 2.37ab 0.28 0.20 0.12 0.98 1.35ab 2.04季别Season处理Treatment稻谷产值Rice production value稻草产值Straw production value化肥成本Fertilizer cost改良剂成本Amendment cost其他成本Other costs净收益Net income
2.3.1 对土壤pH值的影响 由图1可知,随着土壤改良剂用量的增加,稻田土壤pH值呈上升趋势。常量施肥条件下,土壤pH值以G3+100%F处理最高,达5.35,较100%F处理上升0.27,且差异达显著水平。减施25%常量施肥条件下,增施土壤改良剂的处理土壤pH值均高于常量施肥100%F处理,且以G4-25% F处理最高,显著高于100% F、G1-25% F、G2-25% F处理,增幅分别为7.28%、5.42%和4.81%。表明增施土壤改良剂对红壤酸性稻田土壤pH值具有一定的调节作用,且以G4-25% F处理的改良效果为最佳。其原因可能与土壤改良剂的性质有关。
图1 不同处理土壤的pH值
Fig.1 Soil pH of different treatments
2.3.2 对土壤养分含量的影响 从表3可以看出,相同施肥条件下,增施土壤改良剂对土壤碱解氮、有效磷和速效钾含量影响不大。常量施肥处理土壤碱解氮、有效磷和速效钾含量均高于减施25%常量施肥处理。土壤CEC均随改良剂用量增加而增加,且以G3+100%F处理为最高,显著高于100%F、G1+100%F、G1-25%F、G2-25%F处理,增幅分别为13.43%、9.35%、25.62%和15.16%。说明增施土壤改良剂有利于提高土壤的保肥、供肥能力。其原因可能与土壤改良剂的成分有关。
表3 不同处理土壤的养分含量
Table 3 Soil nutrients of different treatments
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant differences.
处理Treatment碱解氮Alkaline nitrogen(mg/kg)有效磷Available potassium(K2O,mg/kg)速效钾Available phosphorus(P2O5,mg/kg)CEC(cmol/kg)100%F 118.0a 26.8a 103.4ab 13.4b G1+100%F 124.3a 26.3ab 106.2a 13.9b G2+100%F 123.7a 26.9a 107.4a 14.6ab G3+100%F 122.6a 27.1a 111.5a 15.2a G1-25% F 103.4b 24.1c 96.3b 12.1b G2-25% F 102.5b 24.6bc 98.9b 13.2b G3-25% F 103.9b 25.1b 100.8ab 14.3ab G4-25% F 101.3b 25.7b 102.5ab 14.9ab
从20世纪80年代至今,我国农田土壤pH值平均下降了0.5个单位,酸化现象十分普遍[2]。而日趋严重的土壤酸化所引起的土壤理化性质恶化[21]、铝离子和重金属活度提高[22]、土壤微生物活性降低[6]等问题,影响农作物生长及农产品品质[8,22-23],已严重制约了我国特别是南方酸性红壤地区农业的可持续发展[24]。研究表明,土壤改良剂不仅能有效改善退化土壤理化和生物学性质[6-8,12,25],促进农作物正常生长并提高其产量和品质[6-8,13-14],而且还能有效降低土壤重金属活性,减轻对农产品的污染[9-11,26]。赵金星等[7]研究表明,与空白对照相比,施用土壤改良剂显著降低了盐化草甸土土壤pH值。邓小华等[8]研究指出,施用土壤改良剂可以提高黄红壤的pH值、碱解氮和速效磷含量,增加土壤CEC。侯红乾等[27]研究认为,施用土壤改良剂对鄱阳湖区潜育化稻田土壤有机质、碱解氮含量无显著影响,但对土壤速效磷、速效钾和pH 值均有显著的提升作用。范呈根等[28]、吴建富等[29]研究指出,增施土壤改良剂(钢渣粉)能显著提高红壤稻田和红壤旱地土壤pH、CEC 和碱解氮、有效磷、速效钾。本研究结果表明,在等量氮磷钾养分供应条件下,增施土壤改良剂能提高红壤酸性稻田土壤pH和CEC,其增幅与土壤改良剂的用量呈线性关系。说明增施土壤改良剂有利于提高红壤酸性稻田土壤pH和土壤的保肥供肥能力。而对土壤碱解氮、有效磷、速效钾养分含量的影响不大,这与已有的报道并非完全一致[8,27-29]。其原因可能与土壤改良剂的成分、含量、性质和研究对象不同有关。
有研究认为,施用土壤改良剂能显著提高水稻产量[7,27]。本研究结果表明,在常量施肥条件下,增施不同用量改良剂的处理早稻产量与单施化肥处理没有明显差异,而晚稻产量均显著高于单施化肥处理,产量增幅达4.0%~5.6%。而在减施25%化肥条件下,增施土壤改良剂处理早、晚稻产量均无显著差异。无论是常量施肥处理,还是减施25%化肥的处理,增施土壤改良剂均有利于提高早、晚稻结实率,且其增幅随改良剂用量增加而增加,这可能与土壤改良剂中含有大量的硅素营养有关,其机理有待研究。从净收益和产投比来看,早稻减施25%化肥、配施150 kg/hm2土壤改良剂和晚稻常量施肥、配施150 kg/hm2土壤改良剂有利于提高周年水稻种植的经济效益。
(1)增施土壤改良剂有利于调控土壤酸性,提高土壤pH值和CEC;对土壤碱解氮、有效磷和速效钾含量影响不大。(2)常量施肥条件下,增施土壤改良剂450 kg/hm2,或者减施25%化肥,增施土壤改良剂600 kg/hm2均有利于双季稻获得高产,其增产原因主要是提高了结实率。(3)从净收益和产投比来看,早稻减施25%化肥、配施土壤改良剂150 kg/hm2和晚稻常量施肥、配施土壤改良剂150 kg/hm2,均有利于提高周年水稻种植的经济效益。
[1] 杨卫东,吴永健,刘春光. 盐碱土改良剂的研究和应用进展[J]. 天津科技,2014, 41(2): 17-20. doi:10.14099/j.cnki.tjkj.2014.02.006.YANG W D, WU Y J, LIU C G. Progress in research and application of saline-alkali soil amendments[J]. Tianjin Science and Technology,2014, 41(2): 17-20. doi:10.14099/j.cnki.tjkj.2014.02.006.
[2] 张福锁. 我国农田土壤酸化现状及影响[J]. 民主与科学,2016(6):26-27.ZHANG F S. Current status and impact of farmland soil acidification in China[J]. Democracy and Science, 2016(6): 26-27.
[3] 蔡泽江,孙楠,王伯仁,徐明岗,黄晶,张会民. 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响[J]. 植物营养与肥料学报,2011, 17(1): 71-78.CAI Z J, SUN N, WANG B R, XU M G, HUANG J, ZHANG H M.Effects of long-term fertilization on red soil pH, crop yield and nitrogen,phosphorus and potassium nutrient uptake[J]. Journal of Plant Nutrition and Fertilize, 2011, 17(1): 71-78.
[4] 鲁艳红,廖育林,聂军,周兴,谢坚,杨曾平,吴浩杰. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响[J]. 土壤学报,2016, 53(1): 202-212.LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P, WU H J.Effects of long-term application of N, P and K fertilizers and lime on acidity of red paddy soils[J]. Journal of Soil Science, 2016, 53(1):202-212.
[5] 温明霞,石孝均,聂振朋,周鑫斌.重庆市柑桔园土壤酸碱度及金属元素含量的变化特征[J].水土保持学报, 2011(5): 191-194,199. doi:10.13870/j.cnki.stbcxb.2011.05.052.WEN M X, SHI X J, NIE Z M, ZHOU X B. Characteristics of soil acidity and alkalinity and metal element content in citrus orchards in Chongqing [J]. Journal of Soil and Water Conservation, 2011(5):191-194, 199. doi:10.13870/j.cnki.stbcxb.2011.05.052.
[6] 李集勤,杨少海,卢钰升,顾文杰,刘阳,刘兰,李淑玲,陈俊标.改良剂对烟叶产质量、土壤理化性质及土壤酶活性的影响[J].广 东 农 业 科 学,2019, 46(5): 9-15. doi:10.16768/j.issn.1004-874X.2019.05.002.LI J Q, YANG S H, LU Y S, GU W J, LIU Y, LIU L, LI S L, CHEN J B. Effects of amendments on yield, soil physical and chemical properties and soil enzyme activities of tobacco leaves[J]. Guangdong Agricultural Sciences, 2019, 46(5): 9-15. doi:10.16768/j.issn.1004-874X.2019.05.002.
[7] 赵金星,周伟,战英策,历永杰,高洪波,何松榆,张玉先,张明聪.土壤改良剂对盐化草甸土物理性质及水稻产量的影响[J]. 作物杂志,2018(6): 138-143. doi:10.16035/j.issn.1001-7283.2018.06.021.ZHAO J X, ZHOU W, ZHAN Y C, LI Y J, GAO H B, HE S Y, ZHANG Y X, ZHANG M C. Effects of soil amendments on the physical properties of salinized meadow soil and rice yield[J]. Crop magazine,2018(6): 138-143. doi:10.16035/j.issn.1001-7283.2018.06.021.
[8] 邓小华,张龙辉,陈金,周米良,田峰,张明发,李源环,张瑶. 改良剂对酸性土壤理化特性及烤烟生长和品质的影响[J]. 中国烟草科学,2018, 39(6): 14-20. doi:10.13496/j.issn.1007-5119.2018.06.003.DENG X H, ZHANG L H, CHEN J, ZHOU M L, TIAN F, ZHANG M F, LI Y H, ZHANG Y. Effects of amendments on physical and chemical properties of acidic soil and growth and quality of flue-cured tobacco[J]. Tobacco Science of China, 2018, 39(6): 14-20. doi:10.13496/j.issn.1007-5119.2018.06.003.
[9] 易秀,刘意竹,姜凌,田浩,叶凌枫. 不同改良剂对重金属污染土壤中小麦镉吸收的影响[J]. 水土保持学报,2015, 29(6): 292-300. doi:10.13870/j.cnki.stbcxb.2015.06.051.YI X, LIU Y Z, JIANG L, TIAN H, YE L F. Effects of different improvers on cadmium uptake by wheat in heavy metal contaminated soils[J]. Journal of Soil and Water Conservation, 2015, 29(6):292-300. doi:10.13870/j.cnki.stbcxb.2015.06.051.
[10] 冉洪珍,郭朝晖,肖细元,史磊,封文利. 改良剂连续施用对农田水稻Cd吸收的影响[J]. 中国环境科学,2019, 39(3): 1117-1123.doi:10.19674/j.cnki.issn1000-6923.2019.0135.RAN H Z, GUO Z H, XIAO X Y, SHI L,FENG W L. Effects of continuous application of amendment on Cd uptake in rice fields[J].Environmental Science of China, 2019, 39(3): 1117-1123. doi:10.19674/j.cnki.issn1000-6923.2019.0135.
[11] 胡雪芳,田志清,梁亮,陈俊德,张志民,朱祥民,王士奎. 不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析[J]. 环境科学 , 2019 39(7): 3409-3417. doi:10.13227/j.hjkx.201711084.HU X F, TIAN Z Q, LIANG L, CHEN J D, ZHANG Z M, ZHU X M,WANG S K. Comparative analysis of effects of different amendments on heavy metal accumulation and yield of rice in lead and cadmium contaminated farmland[J]. Environmental Science, 2019 39(7):3409-3417. doi:10.13227/j.hjkx.201711084.
[12] 杨凤军,安子靖,孙福东,李文国. 不同土壤改良剂对番茄苗期土壤微生物及理化性状的影响[J]. 湖北农业科学,2016, 55(6):1399-140, 1405. doi:10.14088/j.cnki.issn0439-8114.2016.06.010.YANG F J, AN Z J, SUN F D, LI W G. Effects of different soil amendments on soil microorganisms and physicochemical properties of tomato seedlings[J]. Hubei Agricultural Sciences, 2016, 55(6):1399-140, 1405. doi:10.14088/j.cnki.issn0439-8114.2016.06.010.
[13] 汪瑞清,肖运萍,魏林根,袁展汽,刘仁根,林洪鑫. 土壤改良剂对红壤性低产地的应用效果比较研究[J]. 江西农业学报,2011, 23(3):75-77, 81. doi:10.19386/j.cnki.jxnyxb.2011.03.022.WANG R Q, XIAO Y P, WEI L G, YUAN Z Q, LIU R G, LIN H X.Comparative study on application effect of soil amendment to red soil low yield area[J]. Jiangxi Journal of Agricultural Sciences, 2011, 23(3): 75-77, 81. doi:10.19386/j.cnki.jxnyxb.2011.03.022.
[14] 解开治,徐培智,陈建生,严超,唐拴虎,张发宝,黄旭,顾文杰. 酸性土壤改良剂在南方旱坡地花生上的应用效果研究[J]. 广东农业科学,2010,37(11): 10-12. doi:10.16768/j.issn.1004-874X.2010.11.030.XIE K Z, XU P Z, CHEN J S, YAN C, TANG S H, ZHANG F B, HUANG X, GU W J. Study on application effect of acidic soil amendment on peanut in southern dry slope land[J]. Guangdong Agricultural Sciences, 2010, 37(11): 10-12. doi:10.16768/j.issn.1004-874X.2010.11.030.
[15] 陈琨,秦鱼生,喻华,樊红柱,曾祥忠,廖训昌,涂仕华. 不同改良剂对冬水田水稻产量、养分吸收和土壤还原性物质总量的影响[J].中国土壤与肥料,2014(6):27-32.CHEN K, QIN Y S, YU H, FAN H Z, ZENG X Z, LIAO X C, TU S H.Effects of different amendments on rice yield, nutrient uptake and soil reducing substance in winter paddy fields[J]. Chinese Journal of Soil and Fertilizer, 2014(6):27-32.
[16] 陈丽娜. 风沙地土壤改良剂对小麦增产作用[J]. 农业与技术,2019, 39(12): 94-95. doi:10.19754/j.nyyjs.20190630044.CHEN L N. Effect of soil amendment of wind-blown sand on yield increase of wheat[J]. Agriculture & Technology, 2019,39(12):94-95. doi:10.19754/j.nyyjs.20190630044.
[17] 董亮,田慎重,孙泽强,王学君,刘兆辉,李瑞琴,田叶,谭德水,罗加法.黄河三角洲盐碱地土壤改良剂小麦效果研究[J]. 农村经济与科技,2019, 30(1): 1-3.DONG L, TIAN S Z, SUN Z Q, WANG X J, LIU Z H, LI R Q, TIAN Y, TAN D S, LUO J F. Study on the effect of soil amendment wheat in saline-alkali land in the yellow river delta[J]. Rural Economy and Technology, 2019,30(1):1-3.
[18] 秦萍,张俊华,孙兆军,孙媛. 土壤结构改良剂对重度碱化盐土的改良效果[J]. 土壤通报,2019, 50(2): 414-421. doi:10.19336/j.cnki.trtb.2019.02.23.QIN P, ZHANG J H, SUN Z J, SUN Y. Improvement effect of soil structure improver on severe alkalized saline soil[J]. Chinese Journal of Soil Science, 2019,50(2):414-421. doi:10.19336/j.cnki.trtb.2019.02.23.
[19] 湛润生,岳新丽. 硫磺在石灰性土壤改良中的应用[J]. 山西大同大学学报(自然科学版),2009, 25(1): 42-44,47.ZHAN R S, YUE X L. Application of sulfur in calcareous soil improvement[J].Journal of Shanxi Datong University(Natural Science Edition),2009,25(1):42-44,47.
[20] 中国土壤学会农业化学专业委员会. 土壤农业化学常量分析方法[M]. 北京:科学出版社,1983.Chinese Society of Soil Science Agricultural Chemistry Committee.Methods for routine analysis of soil agricultural chemistry[M]. Beijing:Science Press, 1983.
[21] 周晓阳,徐明岗,周世伟,Colinet Gilles. 长期施肥下我国南方典型农田土壤的酸化特征[J]. 植物营养与肥料学报,2015,21(6):1615-1621.ZHOU X Y, XU M G, ZHOU S W, Colinet Gilles. Acidification characteristics of typical farmland soils in southern China under longterm fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2015,21(6): 1615-1621.
[22] 于天一,孙秀山,石程仁,王才斌. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志,2014, 33(11): 3137-3143. doi:10.13292/j.1000-4890.20141022.005.YU T Y, SUN X S, SHI C R, WANG C B. Advances in research on soil acidification hazards and control techniques[J]. Chinese Journal of Ecology, 2014, 33(11): 3137-3143. doi:10.13292/j.1000-4890.20141022.005.
[23] YUAN Z G, CHEN P P, TANG K, GUO L L, ZHU W W, WANG Y Y, YANG J, YI Z X. Effects of soil acidification on yield of late rice and differences in acid resistance among varieties[J]. Agricultural Science & Technology, 2015, 16(5): 980-982,987. doi:10.16175/j.cnki.1009-4229.2015.05.027.
[24] GUO J H, LLIU X J, ZHANG Y.Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. doi:10.1126/science.1182570.
[25] 冀拯宇,周吉祥,张贺,郭康莉,刘晓,姜慧敏,杨俊诚,李桂花,张建峰. 不同土壤改良剂对盐碱土壤化学性质和有机碳库的影响[J].农业环境科学学报,2019, 38(8): 1759-1767.JI Z Y, ZHOU J X, ZHANG H, GUO K L, LIU X, JIANG H M, YANG J C,LI G H, ZHANG J F. Effects of different soil amendments on the chemical properties of saline-alkali soil and organic carbon pools[J]. Journal of Agro-Environment Science, 2019, 38(8): 1759-1767.
[26] 陆素芬,曹晶潇,田美玲,余元元,宋波. 土壤改良剂对污染土壤及栽培蕹菜 Pb、Cd 含量的影响[J]. 江苏农业科学,2019, 47(7):278-281. doi:10.15889/j.issn.1002-1302.2019.07.066.LU S F, CAO J X, TIAN M L, YU Y Y, SONG B. Effects of soil amendments on the contents of Pb and Cd in contaminated soil and cultivated amaranth [J]. Jiangsu Agricultural Sciences, 2019, 47(7):278-281. doi:10.15889/j.issn.1002-1302.2019.07.066.
[27] 侯红乾,冀建华,刘秀梅,刘益仁,董芳菲. 土壤改良剂对鄱阳湖区潜育性稻田的改良作用研究[J]. 土壤通报,2016, 47(6): 1448-1454. doi:10.19336/j.cnki.trtb.2016.06.25.HOU H Q, JI J H, LIU X M, LIU Y R, DONG F F. Study on improvement effect of soil amendment on potential fertility paddy field in poyang lake area[J]. Chinese Journal of Soil Science, 2016, 47(6):1448-1454. doi:10.19336/j.cnki.trtb.2016.06.25.
[28] 范呈根,胡丹丹,吴建富,张添华,陈锋,李秋平. 施用钢渣粉对水稻生长与产量及重金属含量的影响[J]. 湖南农业大学学报 (自 然 科 学 版),2017, 43(2):125-128. doi:10.13331/j.cnki.jhau.2017.02.002.FAN C G, HU D D, WU J F, ZHANG T H, CHEN F, LI Q P. Effects of steel slag powder on rice growth, yield and heavy metal content[J].Journal of Hunan Agricultural University(Natural Science Edition),2017, 43(2): 125-128. doi:10.13331/j.cnki.jhau.2017.02.002.
[29] 吴建富,杨小华,高绘文,范呈根. 施用钢渣对红壤旱地土壤理化性质和大豆产量的影响[J]. 湖南农业大学学报 (自然科学版),2018, 44(6): 625-628. doi:10.13331/j.cnki.jhau.2018.06.009.WU J F, YANG X H, GAO H W, FAN C G. Effects of steel slag application on soil physical and chemical properties and soybean yield in red soil dryland[J]. Journal of Hunan Agricultural University(Natural Science Edition), 2018, 44(6): 625-628. doi:10.13331/j.cnki.jhau.2018.06.009.
Effects of Application of Chemical Fertilizer with Soil Amendment on Grain Yield and Economic Benefit of Double Cropping Rice and Soil Chemical Properties