【研究意义】烟草是我国重要的经济作物,杨静等对黔东南州植烟区的368户烟农农药使用情况进行了问卷调查,显示当前烟草种植中存在用药行为不规范、施药技术不科学等问题[1]。广东省烟区主要县市化学农药销售和使用种类调查后发现,烟区存在使用高毒或高残留的有机磷等农药现象,如灭多威等[2]。农药使用有严格的要求,若用量过大、浓度过高,就可能产生药害,为减少农药药害给烟草生长造成的损失,筛选烟草药害有效修复剂势在必行。【前人研究进展】杀虫剂、杀菌剂多引起烟草急性药害,发生快,表现为叶片褪绿斑点或斑驳。刘世超等研究12种杀菌剂对烟草苗期的药害,表明粉剂型药剂浓度高于正常用量容易产生药害,且药害症状明显,叶面喷雾处理的药剂容易出现药害[3]。对杀虫剂、杀菌剂药害可喷施赤霉素、植保素、腐殖酸等以减轻药害[4]。除草剂残留药害是对烟草危害最大的农药药害,通常观察到药害症状时,作物已经出苗甚至到了种植后期,造成了巨大损失。近年来,湖南、四川、福建、江西、广东、安徽等产区烟叶生产多次出现除草剂药害,其中以二氯喹啉酸和磺酰脲类除草剂残留药害最为普遍。二氯喹啉酸在土壤中持效期长,对水稻生长安全,但对茄科作物如烟草极易产生药害。陈泽鹏等研究表明,二氯喹啉酸半衰期为22 d,处理后180 d,土壤中仍检测到0.069~0.085 mg/kg的残留量,推论稻田中一次施用二氯喹啉酸,烟草的安全间隔期为342 d[5],因此水稻施用的二氯喹啉酸易对下茬烟草造成药害。磺酰脲类除草剂如苄嘧磺隆、砜嘧磺隆、氯嘧磺隆、苯磺隆和烟嘧磺隆等也致烟株产生药害,持续时间长,不易恢复[6-8]。我国对二氯喹啉酸等药害的治理措施有物理化学降解等,如客土法、施用活性炭和生石灰[9-10],另外利用微生物降解除草剂,因其绿色安全成为国内外研究热点。其中,Lu等从原药生产厂的污水处理池中分离得到LS(Ochrobactrum sp.)和WZI菌(Bukhlderia cepecia),2个菌株能高效降解二氯喹啉酸,降解率为 95.7%和 93.5%[11-12]。一些真菌黑曲霉、青霉、假单胞菌、浅灰链霉菌具有降解磺隆类除草剂的作用,但目前降解菌的研究仅局限于菌株的分离筛选和室内试验,还未有成功应用于大田的报道[13]。【本研究切入点】烟草发生药害,及时施用修复剂可有效缓解,减少损失。因此,本研究就几种常见烟草杀虫剂和除草剂药害修复剂进行筛选。【拟解决的关键问题】筛选出修复烟草上灭多威、辛硫磷、吡虫啉、二氯喹啉酸和苄嘧磺隆药害的修复剂,为解决生产中烟草农药药害问题提供科学依据。
供试药剂:90%灭多威可溶性粉剂,广东中迅农科股份有限公司;40%辛硫磷乳油,山东埃森化学有限公司;70%吡虫啉水分散粒剂,拜耳作物科学(中国)有限公司;50%二氯喹啉酸可湿性粉剂,江苏江南农化有限公司;10%苄嘧磺隆可湿性粉剂,浙江天丰生物科学有限公司;微量元素水溶性肥,山东嘉丰海洋生物科技有限公司;0.004%芸苔素内酯水剂,昆明云大科技农化有限公司;植保素,广东省佛山市化工产品技术开发公司;20%赤霉酸可溶性粉剂,浙江钱江生物化学股份有限公司;甲壳素有机水溶性肥,深圳海苒化学科技有限公司;氨基酸肥,漯河百威生物技术有限公司;生物菌肥,山东华诺联邦农化有限公司;活性炭,东莞市洪笙活性炭有限公司;生石灰,广州市庆康化工有限公司;解草酯,北京普博欣生物科技有限责任公司;吡唑解菌酯,北京普博欣生物科技有限责任公司。
供试烟草品种粤烟98,由南雄烟草研究所提供,温室播种,育苗,于5~6片真叶期移栽。供试土壤取自广东省农科院大丰基地试验田,未施用任何农药,经自然风干过筛备用。
1.2.1 杀虫剂药害修复剂的筛选 称取等重土壤装盆,移栽5~6片叶烟苗,移栽后20 d喷施杀虫剂,待烟草出现明显药害后,按说明书推荐使用浓度喷施修复剂,20%赤霉酸可溶性粉剂稀释10 000倍,0.004%芸台素内酯水剂稀释500倍,植保素稀释1 000倍,微量元素肥稀释500倍,氨基酸肥稀释500倍,甲壳素有机水溶性肥稀释1 000倍喷于烟草植株,以喷施清水为对照。每个处理4次重复,每个重复5株烟苗,药后3、6、9 d调查药害发生程度。试验于2017年6—12月在广东省农科院大丰基地试验大棚内进行。
为方便数据统计,对杀虫剂造成的烟草药害进行分级,0级:烟草叶片无药害斑;1级:叶片上有药害斑,占叶面积20%以下;2级:叶片上有药害斑,占叶面积20%~40%;3级:叶片上有药害斑,占叶面积40%~60%;4级:叶片上有药害斑,占叶面积60%~80%;5级:叶片上有药害斑,占叶面积80%以上;
1.2.2 除草剂药害修复剂的筛选 称等重土壤,加入用水稀释的除草剂制剂,混合均匀,使土壤中除草剂达到同一致药害浓度;同时把修复剂稀释加入土壤,混合均匀,使土壤中修复剂达到推荐使用浓度,装盆,移栽5~6片叶烟苗,以不施除草剂和修复剂为空白对照,以只施除草剂无修复剂处理为除草剂对照。20%赤霉酸可溶性粉剂稀释10 000倍,0.004%芸台素内酯水剂稀释500倍,植保素稀释1 000倍,微量元素肥稀释500倍,生物菌肥50 mg/kg,生石灰150 mg/kg,活性碳80 mg/kg,解草酯1 mg/kg,吡唑解草酯4 mg/kg,每个处理4次重复,每个重复5盆烟苗。在温室中种植10、20、30 d后,分别测量烟草中部叶片的叶长、叶宽和株高,计算抑制率。选取效果较好的修复剂,分设5个处理浓度,按上述方法进行试验。试验于2018年3—10月在广东省农科院大丰基地试验大棚内进行。
采用DPS软件对试验结果用邓肯氏新复极差多重比较法(DMRT)进行差异显著性分析。
2.1.1 灭多威药害修复剂的筛选 把灭多威制剂按有效成分配制为500 μg/mL溶液,均匀喷于烟草植株上,药后2 d可见叶片出现灰白色灼伤型不规则药害斑,此时喷施6种修复剂。从表1可以看出,6种修复剂对灭多威药害均有一定的修复作用,微量元素肥的修复效果最好,药后9 d对灭多威药害的修复率达47.28%,其次是氨基酸肥,药后9 d修复率达42.71%。但赤霉酸、芸台素内酯和植保素对药害的修复效果相对较差,药后9 d对灭多威药害的修复率低于20%。因此,对灭多威引致烟草药害的修复剂可以选择微量元素肥和氨基酸肥。
2.1.2 辛硫磷药害修复剂筛选 把辛硫磷制剂按有效成分配制为500 μg/mL溶液,均匀喷于烟草植株上,药后3 d可见烟草叶片出现黄白色药害斑,类似烟草花叶病症状,此时喷施修复剂。在6种修复剂中,微量元素肥的修复效果最好,药后9 d对辛硫磷药害修复率达54.43%,其次是氨基酸肥,修复率达44.72%,甲壳素肥和赤霉酸的修复效果次之,修复率为33.08%和27.75%。芸台素内酯和植保素对药害的修复效果相对较差,药后9 d药害修复率低于20%(表2)。因此,对辛硫磷引起的烟草药害的修复剂可以选择微量元素肥和氨基酸肥。
2.1.3 吡虫啉药害修复剂筛选 把吡虫啉制剂按有效成分配制为350 μg/mL溶液,均匀喷于烟草植株上,药后3 d可见烟草叶片出现黄化褪绿药害斑现象,此时喷施修复剂。在6种修复剂中,芸台素内酯的修复效果最好,药后9 d药害修复率达60.32%,其次是氨基酸肥,修复率达56.77%;微量元素肥和甲壳素肥的修复效果也较好,药后9 d修复率分别为46.24%和42.78%。赤霉酸和植保素的修复效果较差,药后9 d药害修复率低于20%(表3)。因此,对吡虫啉引致的烟草药害可选择芸台素内酯和氨基酸肥进行修复。
表1 不同修复剂对灭多威药害的修复效果
Table1 The remediation effects of different detoxications on methomyl phytotoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
images/BZ_108_213_414_2270_479.png处理Treatment药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)赤霉酸Gibberellin acid 94.65a 83.11a 64.82 10.28 90.64a 78.98ab 58.60 14.45 89.82a 74.80a 52.73 15.50芸台素内酯Brassinolide 92.37ab 83.25a 61.52 14.85 88.49ab 77.15ab 57.86 15.53 86.75ab 71.04ab 52.36 16.08植保素Phytoalexin 95.48a 81.77a 65.45 9.41 91.50a 77.45ab 60.78 11.27 92.48a 67.88b 51.08 18.14微量元素肥Microelement fertilizer 89.44b 74.68b 51.54 28.66 82.65b 65.25d 42.50 37.96 88.54a 55.60c 32.90 47.28甲壳素肥Chitinase fertilizer 94.75a 78.50ab 61.59 14.75 86.48ab 72.58bc 52.12 23.91 90.95a 58.90c 41.86 32.92氨基酸肥Amino acid fertilizer 92.46ab 78.98ab 53.25 26.30 88.75ab 72.66bc 46.85 31.61 90.05a 58.37c 35.75 42.71灭多威 Methom(CK) 95.65a 85.47a 72.25 94.36a 83.25a 68.50 92.80a 76.50a 62.40
表2 不同修复剂对辛硫磷药害的修复效果
Table2 The remediation effects of different detoxications on phoxim phototoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
images/BZ_108_213_1637_2265_1703.png处理Treatment药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)赤霉酸Gibberellin acid 84.58a 72.18a 53.24 14.47 82.15a 68.87a 45.64 20.24 76.63ab 62.50a 36.32 27.75芸台素内酯Brassinolide 85.65a 72.35a 55.83 10.31 82.88a 69.21a 48.90 14.54 77.85ab 64.68a 41.54 17.37植保素Phytoalexin 84.79a 73.65a 58.75 5.62 81.76a 69.98a 52.86 7.62 75.60ab 63.54a 45.69 9.11微量元素肥Microelement fertilizer 82.69ab 69.20ab 44.98 27.74 75.95ab 65.45b 35.97 37.14 70.76c 58.96b 22.91 54.43甲壳素肥Chitinase fertilizer 83.50ab 71.50a 52.92 14.99 77.86ab 68.46a 45.86 19.85 74.15ab 63.15a 33.64 33.08氨基酸肥Amino acid fertilizer 83.42ab 73.28a 54.85 11.89 78.95ab 70.15a 44.65 21.97 74.80ab 63.24a 27.79 44.72灭多威 Methom(CK) 86.25a 75.81a 62.25 83.58a 71.87a 57.22 80.50a 65.87a 50.27
2.2.1 二氯喹啉酸药害修复剂的筛选 花盆土壤中二氯喹啉酸浓度为5×10-3 mg/kg,致烟草产生明显药害。从表4可以看出,活性炭对二氯喹啉酸药害修复效果最好,药后30 d对烟草株高、叶长和叶宽的修复率分别为80.83%、73.92%和85.80%;其次是生石灰,药后30 d对烟草株高、叶长和叶宽修复率分别为64.15%、63.71%和77.07%。而赤霉酸、芸苔素内酯、植保素、微量元素肥和生物菌肥对二氯喹啉酸的修复效果均相对较差。因此,选取生石灰和活性炭分设5个浓度进行二氯喹啉酸药害修复试验,以确定修复剂的适合浓度,试验结果见表5。
表3 不同修复剂对吡虫啉药害的修复效果
Table3 The remediation effects of different detoxications on imidacloprid phototoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
3 d 6 d 9 d处理Treatment药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)药害株率Phototoxic plant rate(%)药害叶率Phototoxic leaf rate(%)药害指数Phytotoxicity index修复率Repair rate(%)赤霉酸Gibberellin acid 72.20ab 55.96b 42.97 4.95 66.50ab 50.82b 37.75 7.16 58.90ab 46.63b 31.15 10.69芸台素内酯Brassinolide 61.36bc 48.60cd 34.40 23.91 55.40bc 42.86c 27.95 31.26 43.47cd 32.50d 13.84 60.32植保素Phytoalexin 70.05ab 55.68b 41.52 8.16 66.47ab 50.68b 35.07 13.75 60.53ab 45.28b 29.96 14.11微量元素肥Microelement fertilizer 64.56b 51.34c 33.81 25.22 56.41bc 44.75c 29.07 28.50 42.15cd 35.65d 18.75 46.24甲壳素肥Chitinase fertilizer 69.96ab 51.20c 38.09 15.84 58.54b 43.45c 31.75 21.91 48.25c 39.76c 19.96 42.78氨基酸肥Amino acid fertilizer 68.76ab 53.18bc 36.76 18.69 61.40b 44.12c 29.80 26.71 45.95c 34.85d 15.08 56.77灭多威 Methom(CK) 76.14a 59.86a 45.21 71.65a 54.92a 40.66 65.35a 50.08a 34.88
表4 不同修复剂对二氯喹啉酸药害的修复效果
Table4 The remediation effect of different detoxications on quinclorac phototoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
10 d 30 d处理Treatment株高Plant height(cm)修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate (cm)叶宽Leaf width(cm)修复率Repair rate (%)株高Plant height(cm)修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate(%)叶宽Leaf width(cm)修复率Repair rate (%)赤霉酸Gibberellin acid 11.25±1.26a 145.19a 11.65±1.25de -2.33ef2.54±0.14d-1.08de 22.45±1.48a 120.10a 13.04±1.24d 17.47e 2.99±0.28d 1.18e芸台素内酯Brassinolide 7.32±0.75cde 19.24e 12.12±1.25cde 15.89d 2.68±0.26cd 3.94d 13.27±1.38de 24.98ef 13.52±1.20cd 30.38de 3.38±0.33cd 6.95de植保素Phytoalexin 7.56±0.82cd 26.92de 11.85±1.02de 5.43e 2.71±0.24cd 5.02d 13.95±1.22de 32.02e 13.75±1.36bcd 36.56d 3.54±0.30cd 9.32d微量元素肥Microelement fertilizer 7.46±0.68cd 23.72de 12.54±1.12cd 32.17c 3.06±0.31c 17.56c 14.76±1.26d 40.41d 14.12±1.22bc 46.50cd 3.95±0.33c15.38c生物菌肥Compound biofertilizer 7.78±0.56cd 33.98d 12.07±0.95cde 13.95d 2.95±0.28c 13.62cd 14.29±1.56d 35.54de 14.31±1.39bc 51.61c 4.11±0.32c17.75c生石灰Quick lime 8.27±0.71bc 49.68bc 13.27±1.15b 60.46b 4.57±0.38b 71.68b 17.05±1.65cd 64.15c 14.76±1.54ab 63.71ab 8.12±0.61bc 77.07b活性碳active carbon 8.78±0.83bc 66.03b 13.96±1.76ab 87.21a5.02±0.48ab 87.81a 18.66±1.77c 80.83b 15.14±1.41ab 73.92a 8.71±0.54b 85.80a二氯喹啉酸Quinclorac 6.72±0.52d 11.71±0.98de 2.57±0.21d 10.86±1.09e 12.39±1.30de 2.91±0.19d空白对照Control 9.84±0.88b 14.29±1.82a 5.36±0.45a 20.51±1.87b 16.11±1.45a 9.67±0.76a
由表5可知,生石灰施用量为150 mg/kg时,修复效果最好,药后30 d对烟草株高、叶长和叶宽修复率分别为70.45%、68.36%和83.36%;但当生石灰施用量增加至300、600 mg/kg时,对药害的修复效果下降,表明利用生石灰作为烟草二氯喹啉酸药害修复剂时需选择合适的使用量,避免用量过大对烟草畸形缓解不利。在试验浓度范围内,活性炭对烟草二氯喹啉酸药害的修复效果随着施用量的增加而增加,当施用量为80 mg/kg时,药后30 d对烟草株高、叶长和叶宽修复率分别为81.44%、76.81%和89.59%,施用量增加到160 mg/kg和320 mg/kg时,对烟草药害的修复效果也有所增加,没有出现用量过大对烟草畸形缓解不利的结果。
表5 生石灰和活性炭对二氯喹啉酸药害的修复效果
Table5 The remediation effect of quick lime and active carbon to quinclorac phototoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
images/BZ_110_213_1079_2270_1145.png处理Treatment Concentration(mg/kg) 株高Plant height cm修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate (cm)叶宽Leaf width(cm)修复率Repair rate (%)株高Plant height(cm)修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate(%)叶宽Leaf width(cm)修复率Repair rate (%)生石灰Quick lime 600 6.83±0.58bc 41.11c 11.74±1.22b 48.42b 4.05±0.26bc 56.99bc 14.07±1.35cd 55.44c 14.42±1.03abc 54.11b 7.12±0.56c 67.04c 300 7.10±0.68b 50.52ab 12.02±1.05ab 56.45ab 4.28±0.36b 65.44ab 14.65±1.41bc 62.08b 14.83±1.32ab 64.01ab 7.77±0.72bc 77.34b 150 7.27±0.66b 56.44a 12.35±1.23ab 65.90a 4.52±0.33b 74.26a 15.38±1.08b 70.45a 15.01±1.45ab 68.36a 8.15±0.54b 83.36a 75 6.87±0.80bc 42.51c 11.88±0.94ab 52.44ab 4.13±0.28c 59.93bc 14.76±1.23bc 63.34b 14.48±1.07abc 55.55b 7.65±0.68bc 75.44b 37.5 6.56±0.57bc 31.71d 11.45±1.35b 40.11c 3.84±0.32cd 49.26c 13.98±1.05c 54.41c 13.92±1.33bc 42.03c 6.86±0.45c 62.92cd 0 5.65±0.55c 10.05±0.96c 2.50±0.18d 9.23±0.84d 12.18±1.10d 2.89±0.16d空白对照CK 8.52±0.95a 13.54±1.28a 5.22±0.40a 17.96±1.68a 16.32±1.56a 9.42±1.06a活性炭Active carbon 320 8.20±0.77a 88.85a 13.38±1.0a 95.42a 5.13±0.52a 96.69a 17.21±1.62ab 91.41a 15.94±1.25a 90.82a 9.17±1.16a 96.17a 160 8.10±0.75a 85.37a 13.22±1.18a90.83ab 5.04±0.32a 93.38ab 16.66±1.50b 85.11b 15.67±1.47ab 84.30b 8.96±0.78a 92.96a 80 7.70±0.84ab 71.43b 13.05±1.30ab 84.53b 4.84±0.52ab 86.03b 16.34±1.33b 81.44bc 15.36±1.04ab 76.81bc 8.74±0.85ab 89.59ab 40 7.48±0.81ab 63.76bc 12.48±1.26abc 69.63c 4.51±0.40ab 73.90bc 16.02±1.28bc 77.78c 14.96±1.38abc 67.15c 7.94±0.96b 77.34c 20 7.13±0.69b 51.57c 11.94±1.07bc 54.15d 4.06±0.38b 57.35c 15.08±1.41c 67.01d 14.45±1.45bc 54.83d 6.59±0.73c 56.66d 0 5.65±0.55c 10.05±0.96c 2.50±0.18c 9.23±0.84d 12.18±1.10d 2.89±0.16d空白对照CK 8.52±0.95a 13.54±1.28a 5.22±0.40a 17.96±1.68a 16.32±1.56a 9.42±1.06a
2.2.2 苄嘧磺隆药害修复剂的筛选 花盆土壤中苄嘧磺隆浓度为2×10-2 mg/kg,致烟草产生明显药害。从表6可以看出,活性炭对苄嘧磺隆药害修复效果最好,处理后30 d对烟草株高、叶长和叶宽的修复率分别为78.11%、80.14%和82.84%,其次是吡唑解草酯,处理后30 d对烟草株高、叶长和叶宽修复率分别为65.16%、65.81%和60.45%,解草酯对株高、叶长和叶宽修复率分别为48.70%、45.39%和53.52%,而赤霉酸、芸苔素内酯、植保素、微量元素肥和生物菌肥对苄嘧磺隆的修复效果相对较差。因此,选取活性炭和吡唑解草酯,分设5个浓度进行苄嘧磺隆药害修复研究,以确定修复剂的适合浓度,结果见表7。由表7可知,吡唑解草酯施用量为4~6 mg/kg时,对苄嘧磺隆药害修复效果最好,药后30 d对烟草株高、叶长和叶宽修复率均在60%~70%之间;当吡唑解草酯施用量增加到8 mg/kg时,药后30 d对烟草株高、叶长和叶宽修复率均在60%以下,修复效果下降。因此用吡唑解草酯作为苄嘧磺隆药害修复剂时,应严格控制使用量。在试验浓度范围内,活性炭对苄嘧磺隆药害修复效果随着施用量的增加而增加,当施用量为320 mg/kg时,药后30 d对烟草株高、叶长和叶宽修复率分别为93.03%、94.99%和96.08%,表明活性炭基本可修复苄嘧磺隆所致烟草药害。
表6 不同修复剂对苄嘧磺隆药害的修复效果
Table6 The remediation effect of different detoxications on bensulfuron-methy phototoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
images/BZ_111_195_420_2281_485.png 修复率Repair rate(%)赤霉酸Gibberellin acid 9.52±0.93a 133.43a 11.84±0.87cd 24.11e 4.81±0.38bc 40.57bc 20.87±1.59a 127.59a 13.19±1.24bc 31.73cd 8.33±0.57bcd 35.07c处理Treatment株高Plant height cm修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate(cm)叶宽Leaf width(cm)修复率Repair rate (%)株高Plant height(cm)修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate(%)叶宽Leaf width(cm)芸台素内酯Brassin olide 5.73±0.45ef 15.00f11.78±1.05cd 21.43e 4.58±0.40bcd 7.24de 12.82±1.38de 23.32f12.95±1.20cd 22.88d 8.02±0.67de11.94e植保素Phytoal exin 6.11±0.62de 26.88e 12.05±1.24bc 33.48cd 4.76±0.33bc 33.33c 13.10±1.2cd 26.94ef 13.22±1.03bc 32.84cd 8.35±0.40bcd 36.57c微量元素肥Microelement fertilizer生物菌肥Compound biofertilizer吡唑解草酯mefenpyr diethyl 6.14±0.50de 27.81e 12.15±0.96abc 37.95cd 4.65±0.51bcd 17..39d 13.36±0.85cd 30.31e 13.17±1.00bc 30.88cd 8.16±0.63cd 22.39d 6.48±0.57cde 38.44de 12.16±0.89abc 38.39cd 4.84±0.35bc 44.93bc 13.54±1.04cd 32.64e 13.45±1.06bc 41.18c 8.49±0.54bc 47.02bc 7.17±0.60cd 60.00c 12.76±1.22ab 65.18ab 4.92±0.32bc 56.52b 16.05±1.25bc 65.16c 14.12±1.32abc 65.81b 8.67±0.71abc 60.45b解草酯Cloquintocetmexyl6.68±0.65cde 44.69d 12.38±1.27abc 48.21c 4.92±0.37bc 56.52b 14.78±1.02c 48.70d 13.56±1.41bc 45.39c 8.58±0.54abc 53.52bc活性炭Active carbon苄嘧磺隆bensulfuron-methy 7.57±0.58c 72.50b 12.92±1.34ab 72.32a 5.06±0.44ab 76.81a 17.05±1.24b 78.11b 14.51±1.24ab 80.14a 8.97±0.58ab 82.84a 5.25±0.43f 11.30±1.06d 4.53±0.45bcd 11.02±0.84e 12.33±1.10d 7.86±0.64e空白对照CK 8.45±0.74b 13.54±1.30a 5.22±0.46a 18.74±1.51ab 15.04±1.34a 9.20±0.89a
杀虫剂灭多威、辛硫磷和吡虫啉易对烟草产生药害,药害症状与刘勇报道的基本一致[14]。赤霉素、植保素、腐殖酸等可修复杀虫剂药害[4],本研究对这3种杀虫剂所致烟草药害的修复剂进行筛选,结果表明微量元素肥对灭多威和辛硫磷药害的修复效果较好,药后9 d修复率分别为47.28%和54.43%,其次是氨基酸肥,药后9 d修复率为42.71%和44.72%。微量元素肥和氨基酸肥均是叶面肥,叶面肥具有肥效快、养分利用率高,可在短期内为植物补充营养,增加抗逆性,有效修复农药急性药害[15]。芸台素内酯和氨基酸肥对吡虫啉药害的修复效果较好,药后9 d药害修复率达60.32%和56.77%。芸苔素内酯是一种生长调节剂,可以提高作物的光合能力,减弱蒸腾作用,促进植物体内细胞的分裂和伸长,作为一种解农药药害修复剂,被广泛使用[16]。
表7 吡唑解草酯和活性炭对苄嘧磺隆药害的修复效果
Table7 The remediation effect of mefenpyr-diethyl and active carbon on bensulfuron-methy phototoxicity
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
images/BZ_112_213_414_2267_479.png处理Treatment Concentration(mg/kg) 株高Plant height cm修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate (cm)叶宽Leaf width(cm)修复率Repair rate (%)株高Plant height(cm)修复率Repair rate (%)叶长Leaf length(cm)修复率Repair rate(%)叶宽Leaf width(cm)修复率Repair rate (%)吡唑解草酯mefenpyrdiethyl 10 7.29±0.51c 45.98bc 12.40±1.23ab 46.56b 4.80±0.40ab 41.86b 15.96±1.25c 50.41bc 13.46±1.23bc 42.18bc 8.63±0.47bc 43.14bc 8 7.58±0.47bc 54.02ab 12.61±0.98ab 55.06ab 4.86±0.28ab 48.84b 16.72±1.08bc 59.38b 13.88±1.36bc 54.57b 8.75±0.61bc 50.98b 6 7.90±0.55b 62.88a 12.92±1.03ab 67.61a 4.97±0.36ab 61.63a 17.45±1.42b 68.00a 14.15±1.14b 62.54a 8.96±0.55ab 64.71a 4 8.01±0.62b 65.93a 12.95±1.16ab 68.83a 5.00±0.42ab 65.12a 17.44±1.30b 67.89a 14.26±1.30b 65.78a 8.90±0.66ab 60.78ab 2 7.48±0.54bc 51.25b 12.64±0.95ab 56.28ab 4.92±0.34ab 55.81ab 16.50±1.44bc 56.79b 13.84±1.12bc 53.39b 8.79±0.48bc 53.59b 0 5.63±0.68d 11.25±1.05b 4.44±0.26b 11.69±1.10d 12.03±1.07d 7.97±0.65c空白对照CK 9.24±0.89a 13.72±1.34a 5.30±0.37a 20.16±1.75a 15.42±1.12a 9.50±0.86a活性炭Active carbon 320 8.80±0.76a 87.81a 13.49±1.04a 90.69a 5.24±0.29a 93.02a 19.57±1.51a 93.03a 15.25±1.09a 94.99a 9.44±0.77a 96.08a 160 8.55±0.73ab 80.88b 13.31±1.14ab 83.40b 5.17±0.32ab 84.88b 18.89±1.43ab 85.01b 15.05±1.22a 89.09ab 9.36±0.63a 90.85ab 80 8.19±0.62bc 70.91c 13.08±1.20ab 74.09bc 5.08±0.38ab 74.42bc 17.96±1.46b 74.03c 14.81±1.30ab 82.01b 9.25±0.73ab 83.66b 40 7.83±0.60c 60.94cd 12.86±1.07b 65.18c 5.00±0.26b 65.12c 17.19±1.52bc 64.94d 14.47±1.19b 71.98c 9.09±0.66b 73.20c 20 7.49±0.71cd 51.52d 12.59±1.21b 54.25cd 4.94±0.30b 58.14cd 16.10±1.35c 52.07e 14.13±1.21b 61.95cd 8.92±0.45bc 62.09d 0 5.63±0.68e 11.25±1.05c 4.44±0.26c 11.69±1.10d 12.03±1.07c 7.97±0.65c空白对照CK 9.24±0.89a 13.72±1.34a 5.30±0.37a 20.16±1.75a 15.42±1.12a 9.50±0.86a
二氯喹啉酸是水稻田常用除草剂,在土壤中残留时间较长,不易降解,是引起下茬烟草畸形药害的一种重要除草剂。本研究发现各种叶面肥和生长调节剂对二氯喹啉酸残留药害修复效果较差,生物菌肥有一定的修复作用,但无法使畸形烟草恢复正常,这与彭耀东等[17]和陈泽鹏等[18]的研究结果一致。施用生石灰可提高土壤碱性,加速土壤中残留的二氯喹啉酸分解,缓解烟草的畸形发生,彭耀东等[17]建议后茬植烟前施用生石灰1 125 kg/hm2 并用水灌溉,以缓解烟株畸形症状。但陈泽鹏等[18]认为土壤中生石灰含量过高,土壤碱性增大,会造成烟草新的畸形生长。本研究也证明土壤中生石灰施用量过大,对二氯喹啉酸药害的修复效果下降,因此利用石灰修复二氯喹啉酸药害时,需控制其使用量,以免加重药害。生石灰增加土壤碱性的同时,也可有效抑制烟草茎基部病害如青枯病、黑胫病的发生[19]。本研究结果表明,活性碳对二氯喹啉酸药害的修复效果比生石灰更好,活性炭可吸附土壤中的二氯喹啉酸,降低二氯喹啉酸在土壤中的浓度,对烟草株高和叶宽的畸型程度有明显修复效果。活性碳或生物碳可吸附土壤中的二氯喹啉酸,降低烟草或蔬菜根际土壤中二氯喹啉酸的浓度,减轻除草剂对作物的危害[10,18,20]。可见,活性炭是有效减缓二氯喹啉酸药害的修复剂。
苄嘧磺隆等磺酰脲类除草剂也是一种易致烟草药害的水稻田常用除草剂。李德萍等指出复合菌肥对氯嘧磺隆所致甜菜药害有较好的修复作用[21],本研究显示生物菌肥对烟草苄嘧磺隆药害的修复效果比赤霉酸、芸苔素内酯、植保素和微量元素肥要好。除草剂安全剂可选择地保护作物免遭除草剂的药害,是除草剂药害研究的新领域,目前已经商品化的安全剂有10余种,其中最成功的是二氯乙酰胺类安全剂[22]。N-二氯乙酰基-2-甲基-1-氧杂-4-氮杂-螺[4.4]壬烷能够减轻氯嘧磺隆对玉米幼苗的药害[23],环丙磺酰胺和奈安对高粱烟嘧磺隆药害有一定的修复作用[24],环丙磺酰胺和双苯噁唑酸可缓解玉米烟嘧磺隆药害[25]。苏旺苍等[26]报道吡唑解草酯可较大程度地减轻药害对玉米有效叶片数、茎粗的影响,解草酯拌种在有效叶片数、茎粗、株高、地上鲜质量上均能获得相对理想的缓解效果。但张全国等[27]研究显示解草酯虽能减小烟嘧磺隆对玉米株高及穗位高的影响, 但不能对玉米药害进行有效修复,不仅药害率有所增加, 产量也进一步下降。本研究显示解草酯和吡唑解草酯对烟草苄嘧磺药害均有一定的修复效果,吡唑解草酯对烟草苄嘧磺隆药害的修复效果优于解草酯,在土壤施用量为4 mg/kg时修复效果最好,当施用量增加到8 mg/kg时,修复效果明显下降,因此使用吡唑解草酯作为苄嘧磺隆药害解毒剂时,应控制药剂使用量。因活性碳对除草剂的吸附作用,其对烟草苄嘧磺隆药害修复效果最好,且随着活性炭使用量的增大,修复效果随之增加,是较安全的烟草苄嘧磺隆药害修复剂。
灭多威、辛硫磷和吡虫啉施用不当时,可导致烟草产生药害。本研究结果表明,微量元素肥对灭多威和辛硫磷引起的烟草药害修复效果较好,芸台素内酯和氨基酸肥可缓解吡虫啉药害。二氯喹啉酸和苄嘧磺隆是水稻田常用除草剂,常引起烟草药害。生石灰和活性炭对二氯喹啉酸药害修复效果较好,活性炭和吡唑解草酯对苄嘧磺隆药害修复效果较好,但利用生石灰修复二氯喹啉酸药害和利用吡唑解草酯修复苄嘧磺隆药害时,需控制其使用量,以免加重药害。活性炭对2种烟草除草剂药害均有较好的修复效果,且随着使用量的增大,修复效果随之增加,是较安全的二氯喹啉酸和苄嘧磺隆药害修复剂。
[1] 杨静,赵东方,邹光进,曲振飞,潘和平,龙秋蓉,彭杰.黔东南州烟农使用农药现状调查及对策[J].安徽农业科学,2018,46(34):199-201,231.doi:10.13989/j.cnki.0517-6611.2018.34.063.YANG J,ZHAO D F, ZOU G J,QU Z F,PAN H P,LONG Q R,PENG J.On-site investigation and strategy on pesticides usage of tobacco grower in qiandongnan prefecture[J]. Anhui Agricultural Sciences,2018,46(34):199-201,231.doi:10.13989/j.cnki.0517-6611.2018.34.063.
[2] 蒲小明,陈永明,沈会芳,张景欣,邱妙文,孙大元,罗振亚,林壁润.广东省烟区主要虫害化学防治现状与控制技术研究[J]. 广东农业科学,2016,43(10):100-105. doi:10.16768/j.issn.1004-874X.2016.10.018.PU X M, CHEN Y M, SHEN H F, ZHANG J X, QIU M W, SUN D Y,LUO Z Y, LIN B R. Studiy on technologies and investigation of chemical control for pest in Guangdong tobacco area. Guangdong Agricultural Sciences, 2016,43(10): 100-105. doi: 10.16768/j.issn.1004-874X.2016.10.018.
[3] 刘世超,黄国联,李斌,赵城钢,陈德鑫,孙现超.烟草苗期12种常用杀菌剂的药害症状分析[J].安徽农业科学,2015,43(15):111-113,129.doi:10.13989/j.cnki.0517-6611.2015.15.041.LIU S C,HUANG G L,LI B,ZHAO C G, CHEN D X, SUN X C.Phytotoxicity on tobacco at seedling stage caused by twelve tobacco bactericides[J].Anhui Agricultural Sciences,2015,43(15): 111-113,129.doi:10.13989/j.cnki.0517-6611.2015.15.041.
[4] 刘肇彤,姬季枝.烟草药害的症状识别及预防补救措施[J].现代农业科技,2011(7):179,181.LIU Z T,JI J Z.Symptom recognition and remedial measures of tobacco phototoxicity[J].Modern Agricultural Science and Technology,2011(7): 179,181.
[5] 陈泽鹏,王静,万树青,邓建朝.烟区土壤残留二氯喹啉酸的消解动态[J].农药,2007,46(7):479-483. doi:10.16820/j.cnki.1006-0413.2007.07.017.CHEN Z P, WANG J, WAN S Q, DENG J C. Degradation dynamic of quinclorac in soil of growing tobacco[J]. Agrochemicals, 2007,46(7):479-483. doi:10.16820/j.cnki.1006-0413.2007.07.017.
[6] 沈会芳,蒲小明,张景欣,孙大元,林壁润. 两种稻田除草剂引起的烟草药害及替代除草剂筛选试验[J]. 广东农业科学,2019,46(1):84-90. doi:10.16768/j.issn.1004-874X.2019.01.013.SHEN H F, PU X M, ZHANG J X, SUN D Y, LIN B R. Phototoxicity of two paddy herbicides on tobacco and screening of alternativehHerbicides.Guangdong Agricultural Sciences, 2019,46(1): 84-90. doi:10.16768/j.issn.1004-874X.2019.01.013.
[7] 张仁阔,尹显慧,黄化刚,龙友华,吴小毛,陈斌,杨森,王茂聪,姚本柱.砜嘧磺隆土壤残留致烟草药害症状及其致害临界值[J].山地农业生物学报,2015,34(5):89-91.doi: 10.15958/j.cnki.sdnyswxb.2015.05.018.ZHANG R K, YIN X H, HUANG H G, LONG Y H, WU X M, CHEN B, YANG S, WANG M C, YAO B Z.Symptoms of tobacco phytotoxicity caused by rimsulfuron and the critical concentration threshold[J].Journal of Mountain Agriculture and Biology, 2015,34(5):89-91.doi:10.15958/j.cnki.sdnyswxb.2015.05.018.
[8] 郝文波,李丽春,韩云,唐明,冯秀杰,张国宾,万树青.6 种长效除草剂土壤残留致烟草药害症状及其致害临界值[J].广东农业科学,2013,40(9):80-82,89.doi:10.16768/j.issn.1004-874X.2013.09.038.HAO W B, LI L C, HAN Y, TANG M, FENG X J, ZHANG G B, WAN S Q. Study of critical concentration and symptoms in tobacco phytotoxicity caused by six soil residual herbicides[J]. Guangdong Agricultural Sciences, 2013, 40(9): 80-82,89.doi:10.16768/j.issn.1004-874X.2013.09.038.
[9] 黄庆,刘忠珍,黄玉芬,黄连喜,魏岚,李衍亮,杨少海,许桂芝.生物炭 + 石灰混合改良剂对稻田土壤 pH、有效镉和糙米镉的影响[J].广东农业科学,2017,44(9):63-68.doi:10.16768/j.issn.1004-874X.2017.09.010.HUANG Q, LIU Z Z, HUANG Y F, HUANG L X, WEI L, LI Y L,YANG S H, XU G Z. Effects of blended amendment(biochar + lime)on pH, available Cd in paddy soiland, Cd content inbrown rice[J].Guangdong Agricultural Sciences, 2017,44(9):63-68.doi: 10.16768/j.issn.1004-874X.2017.09.010.
[10] 杨彩宏,冯莉,田兴山,陶卫萍,岳茂峰,崔烨.二氯喹啉酸土壤残留对后茬蔬菜药害测定及修复研究[J].广东农业科学,2016,43(2):62-66.doi:10.16768/j.issn.1004-874X.2016.02.012.YANG C H, FENG L, TIAN X S, TAO W P, YUE M F, CUI Y. Assay on the residue of quinclorac in soil to the succession vegetables and remediation effects of two antidotes[J].Guangdong Agricultural Sciences, 2016,43(2):62-66.doi:10.16768/j.issn.1004-874X.2016.02.012.
[11] LU Z M,LI Z M,SANC L Y. Characterization of a strain capable of degrading a Herbicide mixture of quinclarac and bensulfuron methyl[J]. Pedosphere,2008,18(5):554-563.
[12] LU Z M,WU S W,RUAN A D. Phylogenetic and degradation characterization of Buerkholderia cepecia WZI degrading quinclorac[J]. Envion Sciences Heal B,2003,38(6):771-782.
[13] 赵炎,陈晨,韩亮,李明梅,王新.微生物降解磺隆类除草剂的研究进展[J].湖北农业科学,2017,56(23):4443-4446. doi:10.14088/j.cnki.issn0439-8114.2017.23.003.ZHAO Y, CHEN C, HAN L, LI M M, WANG X. The research progress of microbial degradation of sulfonylurea herbicide[J]. Hubei Agricultural Sciences, 2017,56(23):4443-4446. doi:10.14088/j.cnki.issn0439-8114.2017.23.003.
[14] 刘勇.烟草常用农药对漂浮苗药害的评价[J].农药,2006,45(5):353-356.doi:10.16820/j.cnki.1006-0413.2006.05.024.LIU Y. Injury by commonly used tobacco pesticides evaluated in a floating seedling assay[J]. Agrochemicals, 2006,45(5):353-356.doi:10.16820/j.cnki.1006-0413.2006.05.024.
[15] 李小明,龙惊惊,周悦,沈丽红,王远,王洪庆.叶面肥的应用及研究进展[J].安徽农业科学,2017,45(3):127-130. doi:10.13989/j.cnki.0517-6611.2017.03.043.LI X M, LONG J J, ZHOU Y, SHEN L H, WANG Y, WANG H Q.Application and research progress of foliar fertilizer[J]. Anhui Agricultural Sciences, 2017,45(3) : 127- 130. doi:10.13989/j.cnki.0517-6611.2017.03.043.
[16] 范树茂.芸苔素内酯对提高作物抗逆性的研究进展[J].今日农药,2017(1):21-23.FAN S M. Research Progress on Brassinolide for Improving Stress Resistance Crops[J]. The New Century of Agrochem, 2017(1): 21-23.
[17] 彭耀东,钟秋瓒,申昌优,刘小平,肖先仪,曾浩,万树青.几种解毒剂对烟草二氯喹啉酸药害的修复效果[J].江西农业学报,2014,26(11):46-50.doi:10.19386/j.cnki.jxnyxb.2014.11.012.PENG Y D, ZHONG Q Z , SHEN C Y, LIU X P, XIAO X Y, ZENG H,WAN S Q. Remediation effects of several antidotes on phytotoxicity of quinclorac to tobacco[J]. Acta Agriculturae Jiangxi, 2014,26(11):46-50. doi:10.19386/j.cnki.jxnyxb. 2014.11.012.
[18] 陈泽鹏,邓建朝,万树青,王静,詹振寿.二氯喹啉酸致烟草畸形的解毒剂筛选与解毒效果[J].生态环境,2007,16(2):453-456.doi:10.16258/j.cnki.1674-5906.2007.02.038.CHEN Z P, DENG J C, WAN S Q, WANG J, ZHAN Z S. Detoxication of some chemicals for deformity of tobacco by quinclorac[J].Ecology and Environment, 2007,16(2):453-456. doi:10.16258/j.cnki.1674-5906.2007.02.038.
[19] 施河丽,向必坤,彭五星,高艳波,谭军.调节植烟土壤酸度防控烤烟青枯病[J].中国烟草学报,2015,26(6):50-53.doi:10.16472/j.chinatobacco.2014.455.SHI H L, XIANG B K, PENG W X, GAO Y B, TAN J. The prevention and control of tobacco bacterial wilt by regulating soil acidity[J]. Acta Tabacaria Sinica,2015,26(6):50-53.doi:10.16472/j.chinatobacco.2014.455.
[20] 杨森,黄化刚,龙友华,尹显慧,王英.除草剂土壤残留致烟草药害及其修复技术[J].山地农业生物学报,2017,36(3):61-67.doi:10.15958/j.cnki.sdnyswxb.2017.03.011.YANG S, HUANG H G, LONG Y H, YIN X H, WANG Y. Tobacco phytotoxicity caused by soil herbicide residues and the remediation techniques[J]. Journal of Mountain Agriculture and Biology,2017,36(3):61-67. doi:10.15958/j.cnki.sdnyswxb.2017.03.011.
[21] 李德萍,伦志安,王振东,冯世超,穆娟微.益普生物肥对氯嘧磺隆药害缓解效果//中国植物保护学会2016年学术年会论文集[C].2016:269-272.LI D P, LUN Z A,WANG Z D, FENG S C, MU W J. The alleviating effect of Yipu bio-fertilizer to the phytotoxicity of chlorimuron-ethyl//Proceedings of the Annual Meeting of Chinese Society for Plant Protection(2016)[C] . 2016: 269-272.
[22] 付春伶,张国宾. 烟田残留除草剂药害治理研究进展[J]. 广东农业科学,2018,45(8):98-106. doi:10.16768/j.issn. 1004-874X.2018.08.015.FU C L, ZHANG G B. Research on phytotoxicity control of tobacco herbicides residues[J]. Guangdong Agricultural Sciences, 2018,45(8):98-106. doi:10.16768/j.issn. 1004-874X.2018.08.015.
[23] 张金艳,毕洪梅,王亚飞,曹先良.用于减轻氯嘧磺隆对玉米残留药害的除草剂解毒剂[J].农药,2008,47(7):525-527.doi:10.16820/j.cnki.1006-0413.2008.07.022.ZHANG J Y, BI H M, WANG Y F, CAO X L. Herbicide antidote on protect maize residual damage from chlorimuron[J]. Agrochemicals,2008,47(7): 525-527.doi:10.16820/j.cnki.1006-0413.2008.07.022.
[24] 郭瑞峰,张建华,曹昌林,范娜,李光,史丽娟,江佰阳,彭之东,白文斌.2种安全剂减轻烟嘧磺隆残留对高粱药害的作用[J].山西农业科学,2017,45(8):1335- 1337.GUO R F,ZHANG J H,CAO C L,FAN N,LI G,SHI L J,JIANG B Y,PENG Z D,BAI W B. Effects of 2 kinds of safety agents on protecting sorghum from residual injury of nicosulfuron[J]. Shanxi Agricultural Sciences, 2017,45(8): 1335- 1337,1356.
[25] 高新菊,马毅辉, 王恒亮, 陈威,贾刚民,张俊涛,张振臣,闰凤鸣.3种除草剂安全剂对玉米烟嘧磺隆药害的解毒效果[J].农药,2015,54(4):306-309. doi:10.16820/j.cnki.1006-0413.2015.04.023.GAO X J, MA Y H,WANG H L,CHEN W, JIA G M, ZHANG J T,ZHANG Z C,YAN F M. Detoxication effects of three safeners on phytotoxicity of nicosulfuron on maize[J]. Agrochemicals, 2015,54(4): 306-309.doi:10.16820/j.cnki.1006-0413.2015.04.023.
[26] 苏旺苍 ,葛玉红 ,燕照玲,吴仁海 ,王恒亮 ,薛飞 ,姜军 ,秦亚芳,鲁传涛. 3种解毒剂对玉米烟嘧磺隆药害的解毒效应初探[J].河 南 农 业 科 学,2015,44(12):79-83.doi:10.15933/j.cnki.1004-3268.2015.12.019.SU W C, GE Y H, YAN Z L, WU R H,WANG H L,XUE F,JIANG J,QIN Y F,LU C T. Detoxification effects of three antidotes on the phytotoxicity of nicosulfuron to maize[J]. Henan Agricultural Sciences, 2015,44(12):79-83.doi:10.15933/j.cnki.1004-3268.2015.12.019.
[27] 张全国,杨利华,董金皋,张金林.解草酯及二氯丙烯胺对烟嘧磺隆和硝磺草酮药害的解毒效应研究[J].河北农业科学,2010,14 (9):63-65, 67.doi:10.16318/j.cnki.hbnykx.2010.09.010.ZHANG Q G, YANG L H, HUANG J G, ZHANG J L. Study on the detoxication effects of cloquintocet-mexyl and dichlormid on phytotoxicity of nicosulfuron and mesotrione on maize[J]. Hebei Agricultural Sciences, 2010, 14(9):63-65, 67. doi:10.15933/j.cnki.1004-3268.2015.12.019.
Screening of Detoxication for Tobacco Phytotoxicity Caused by Insecticides and Herbicides