【研究意义】水稻素有硅酸盐植物之称,硅素和氮、磷、钾一样,是水稻生长所需的重要营养元素之一[1-2]。很多研究表明,通过施用硅肥增加土壤供硅能力可以提高水稻光能利用率、促进根系活力和呼吸作用、降低蒸腾作用和增强抗病虫害和抗倒伏能力,并能够调节营养元素吸收利用,从而提高水稻产量和稻米品质[1-5]。因此,在稻作生产中合理调控硅素的供应具有重要的意义。【前人研究进展】在我国南方的水稻土中,土壤有效硅含量普遍较低[6],红砂岩、花岗岩、花岗片麻岩、轻质第四纪红色粘土和浅海沉积物母质发育的水稻土有效硅一般低于80 mg/kg[7];粘质第四纪红色粘土发育的水稻土有效硅含量在120 mg/kg左右[8]。同时,水稻对硅的吸收量远大于氮磷钾三要素的总和[9-10]。水稻持续高产,土地复种指数较高,农作物每年从土壤中带走的硅素远远大于氮磷钾养分的总和,因此,单独依靠土壤硅的自然风化难以维持土壤硅素平衡,再加上硅的淋溶渗漏损失,南方地区的水稻土普遍存在缺硅状况。【本研究切入点】很多研究证明,土壤中硅素的相对匾乏会明显降低土壤的供硅能力,并进一步限制水稻生长对硅素的需求,从而造成水稻产量下降[11-12]。因此,适当增施硅肥是提升水稻产量的重要途径之一[13-15]。然而,目前的硅肥施用效果研究多集中在普通水稻品种中[13-15],而鲜有研究报道硅肥在糯稻上的施用效果。【拟解决的关键问题】本研究以糯稻品种为对象,研究施用硅肥对其抗病能力、产量和米质及经济效益的影响,从而为糯稻生产上合理施用硅肥提供理论和技术支撑。
试验地位于江西省景德镇市浮梁县罗家桥乡鲍家村,该地区属中亚热带潮湿天气,年均温17 ℃,年降水量1 764 mm。试验地土壤为水稻土,耕层土壤pH 6.9,有机碳16.22 g/kg,全氮0.95 g/kg,全磷 1.02 g/kg,全钾 15.41 g/kg,碱解氮143.70 mg/kg,速效磷10.30 mg/kg,速效钾125.10 mg/kg,有效硅(SiO2)42.50 mg/kg。
试验设施用硅肥562.5 kg/hm2处理(全部作基肥施用),以不施硅肥作对照,3次重复,小区面积100 m2。供试硅肥由辽宁省锦西市化工总厂提供,其枸溶性SiO2含量为35%。均施用等量的氮磷钾肥,分别为尿素(N 46%)、钙镁磷肥(P2O5 12.5%)和氯化钾(K2O 60%),N、P2O5和K2O用量分别为120、90和150 kg/hm2。其中氮肥60%作基肥、40%在返青期追肥,磷肥全部作基肥施用,钾肥50%作基肥、50%在孕穗期追肥。
供试糯稻品种为麦颖2号(江西省农业科学院水稻研究所选育),采用水育秧方式,2018年6月30日播种,用种量30 kg/hm2。7月25日移栽,移栽规格为20 cm×20 cm。水分管理同农民常规习惯一致,为调查病虫害情况,所有处理均不采用农药防治措施。11月20日成熟收获。
1.3.1 病情指数调查 在水稻抽穗期,每个小区随机调查500株,查看穗颈稻瘟病和纹枯病发病情况,穗颈稻瘟病的判定标准为水稻穗颈部节上产生褐色小点,病部成黑色;纹枯病的判定标准为病部组织软腐,叶鞘溃烂。其中穗颈稻瘟病和纹枯病的分级标准参考《中国水稻品种试验与审定》[16],计算病株率和病情指数。
1.3.2 产量测算 在水稻成熟期,每个小区随机选取10个点,每个点收割1 m2,带回室内,脱粒、晒干称重,计算产量。
1.3.3 稻米品质分析 小区测产后,收集5 kg稻谷,脱壳后测定稻米的出糙率,再经过精米机筛选计算精米率和整精米率:
出糙率(%)=(糙米完整粒重量+50%不完整粒重量)/糙米总重量×100
精米率(%)=精米重量/稻谷重量×100
整精米率(%)=完整精米重量/稻谷重量×100
1.3.4 经济效益分析 按照糯米的价格和产量计算稻米产值,并结合硅肥等农资投入进一步计算经济效益。在本试验中,2018年N、P2O5和K2O的价格分别为5.2元/kg、8.0元/kg和5元/kg,糯稻种子为6元/kg,精糯米价格为6元/kg。硅肥价格为1.8元/kg。
试验数据采用Excel 2003进行整理,采用SAS 9.1进行统计分析,采用LSD进行差异显著性测验,图件采用Origin 8.1进行制作。
从表1可以看出,施用硅肥可以显著提高糯稻对穗颈稻瘟病和纹枯病的抗病能力,与不施硅肥相比,施用硅肥处理穗颈稻瘟病株率和病情指数分别下降80.65%和84.23%,纹枯病病株率和病情指数分别降低51.93%和73.44%。
表1 施用硅肥处理糯稻穗颈稻瘟病和纹枯病发生情况
Table 1 Occurrence of neck blast and sheath blight of glutinous rice under different silicon fertilization treatments
注:同列数据后小写英文字母不同者表示差异显著。
Note: Different lowercase letters in the same column represent significant difference.
处理Treatment穗颈稻瘟病 Neck blast 纹枯病 Sheath blight病株率Rate of diseased plant(%)病情指数Disease index病株率Rate of diseased plant(%)病情指数Disease index不施硅肥(CK)No silicon fertilization 62.91a 38.75a 54.25a 42.35a施硅肥Silicon fertilization 12.17b 6.11b 26.08b 11.25b
由图1可知,施用硅肥可以显著提高糯稻的产量,与不施硅肥相比,硅肥处理糯稻产量增加19.74%;结实率略有提高,但增幅不显著;硅肥处理可以显著提高糯稻的千粒重,比不施硅肥增加12.17%。不施硅肥对照千粒重降低的原因可能与灌浆期遇高温有关,而由于硅肥施用可以显著提高糯稻的抗逆性,因此,本试验硅肥处理千粒重明显高于不施硅肥对照。
图1 硅肥处理糯稻产量及产量构成变化
Fig.1 Changes in the yield and its composition of glutinous rice under different silicon fertilization treatments
小写英文字母不同者表示差异显著
Different lowercase letters represent significant difference
由图2可知,施用硅肥可以明显提高糯稻的碾米品质,与不施硅肥相比,硅肥处理糯稻精米率和整精米率分别提高5.42%和10.04%,而出糙率增加不显著。
图2 硅肥处理糯稻碾米品质变化
Fig.2 Changes of glutinous rice quality under different silicon fertilization treatments
小写英文字母不同者表示差异显著
Different lowercase letters represent significant difference
表2显示,在糯稻种植中,虽然硅肥施用增加了农资投入(硅肥1 012.5元/hm2),但是由于其精糯米产量和产值显著增加(施用硅肥处理精糯米产值比不施硅肥对照提高26.18%),因此,扣除农资投入后,硅肥处理的效益分别比不施硅肥处理增加23.48%,说明施用硅肥可以显著提高糯稻的经济效益。
表2 各处理糯稻经济效益变化(元/hm2)
Table 2 Economic benefits of glutinous rice of different treatments(yuan/hm2)
注:硅肥价格为1.8元/kg,N、P2O5和K2O价格分别为5.2元/kg、8.0元/kg和5元/kg,糯稻种子为6元/kg,精糯米价格为6元/kg;同列数据后小写英文字母不同者表示差异显著。
Note: The prices of Si fertilizer was 1.8 yuan/kg.The prices of N, P2O5 and K2O were 5.2 yuan/kg, 8.0 yuan/kg and 5 yuan/kg, respectively.The price of glutinous rice seeds was 6 yuan/kg and the price of glutinous rice was 6 yuan/kg.Different lowercase letters in the same column represent significant difference.
处理Treatment硅肥投入Si input(yuan/hm2)种子化肥投入Seeds and fertilizers input(yuan/hm2)精糯米Fine glutinous rice产量Yield(kg/hm2)产值Value(yuan/hm2)效益Benefit(yuan/hm2)不施硅肥No silicon fertilization(CK)0 180+2094 2950.5b 17703.0b 15429.0b施硅肥Silicon fertilization 1012.5 180+2094 3723.0a 22338.0a 19051.5a
由于支链淀粉含量较高(大于95%),因此糯米粘性较高,且富含蛋白质和脂肪,是制作粽子、八宝粥和各类甜品的主要原料[17-18]。然而,由于产量偏低,抗病能力较差,糯稻的种植规模普遍较小[19]。近年来,随着人们经济水平的提高,市场对糯米的需求日益增加[19-20],再加上常规稻米库存较大和价格疲软,水稻种植业结构急需调整[21],因此,糯稻的种植需求愈来愈大。本研究表明,在糯稻生产上,施用硅肥可以显著提高糯稻对穗颈稻瘟病和纹枯病的抗病能力,这与张佑宏等[22]、张国良等[23]的研究结果相似,其原因主要是硅元素在水稻叶片和细胞中大量积累,起到了物理屏障作用,提高了水稻叶片的结构抗性,从而阻挡了病菌菌丝的入侵[24-25]。也有研究认为硅元素可能参与了植物和病原物体系的代谢过程,经过生理生化反应和信号传导等途径,激活了植物的防卫基因,进而诱导抗病性蛋白的表达,从而抑制病害发生[26]。但是,关于糯稻抵抗穗颈稻瘟病和纹枯病所需的合理硅肥用量还有待进一步研究。
除了提高糯稻的抗病能力,本研究结果还表明,硅肥可以显著提高糯稻的产量和碾米品质,这与何巧林等[1]、刘红芳等[4]、PATI等[27]的研究结论一致。糯稻产量的提升主要与千粒重增加有关,而在碾米品质中,硅肥主要是提高精米率和整精米率,这与硅降低了稻米垩白面积有关[28-29],而精米率与垩白面积呈显著负相关[28]。进一步通过农资投入和糯米产值分析表明,虽然硅肥处理增加了农资投入,但其糯米产值较大,因此,硅肥处理的经济效益比不施硅处理增加23.48%。同时,由于硅肥处理可以在无防病农药措施的情况下显著提高糯米的抗病能力和产量,其在糯米的有机种植中应用前途广阔。但是,有机稻米的种植范畴较广,标准也较高[30-31],有关硅肥施用的方式和用量还有待进一步研究和验证。
在糯稻种植中,施用硅肥可以增强糯稻对穗颈稻瘟病和纹枯病的抗病能力。在合理施用氮磷钾肥的基础上,增施硅肥是进一步提高糯稻产量和碾米米质,进而增加农民收入的有效措施。
[1] 何巧林,张绍文,李应洪,谯晶,孙永健,马均.硅钾配施对水稻茎秆性状和抗倒伏能力的影响[J].杂交水稻,2017, 32(1): 66-73.doi:10.16267/j.cnki.1005-3956.201701019.HE Q L, ZHANG S W, LI Y H, QIAO J, SUN Y J, MA J.Effects of silicon and potassium fertilizer combination on stem traits and lodging resistance of rice[J].Hybrid Rice, 2017, 32(1): 66-73.doi: 10.16267/j.cnki.1005-3956.201701019.
[2] 郑泽华,娄运生,左慧婷,石一凡,王颖.施硅对夜间增温条件下水稻叶片生理特性的影响[J].中国农业气象,2017, 38(10): 663-671.doi: 10.3969/j.issn.1000-6362.2017.10.005.ZHENG Z H, LOU Y S, ZUO H T, SHI Y F, WANG Y.Effect of silicate application on rice physiological properties under nighttime warming[J].Chinese Journal of Agrometeorology, 2017, 38(10): 663-671.doi: 10.3969/j.issn.1000-6362.2017.10.005.
[3] 王伟,张合心,黄承和,常春荣.海南硅高效水稻的筛选及硅吸收 特 征[J].中国农学通报,2014, 30(3): 61-65.doi: 10.11924/j.issn.1000-6850.2013-1015.WANG W, ZHANG H X, HUANG C H, CHANG C R.Screening and silicon uptake characteristic of silicon high-efficiency rice in Hainan[J].Chinese Agricultural Science Bulletin, 2014, 30(3): 61-65.doi:10.11924/j.issn.1000-6850.2013-1015.
[4] 刘红芳,宋阿琳,范分良,李兆君,梁永超.高供氮水平下不同硅肥对水稻茎秆特征的影响[J].植物营养与肥料学报,2018 (3): 758-768.doi: 10.11674/zwyf.17485.LIU H F, SONG A L, FAN F L, LI Z J, LIANG Y C.Characteristics of rice stem in response to different silicon fertilizers under high nitrogen supply level[J].Journal of Plant Nutrition and Fertilizers, 2018,24(3): 758-768.doi: 10.11674/zwyf.17485.
[5] MCHARG C, MCHAR A A.Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice[J].Environmental and Experimental Botany, 2015, 120: 8-17.doi:10.1016/j.envexpbot.2015.07.001.
[6] 王飞,秦方锦,庄亚其,韩红煊,张欢,王斌,徐静高.宁波市水稻土壤硅素丰缺指标体系研究初报[J].土壤通报, 2014, 45(6): 1491-1495.doi: 10.19336/j.cnki.trtb.2014.06.031.WANG F, QIN F J, ZHUANG Y Q, HAN H X, ZHANG H, WANG B,XU J G.Primary study of rich-lack index system of silicon on paddy soil in Ningbo[J].Chinese Journal of Soil Science, 2014, 45(6):1491-1495.doi: 10.19336/j.cnki.trtb.2014.06.031.
[7] 臧惠林, 张效朴, 何电源.我国南方水稻土供硅能力的研究[J].土壤学报,1982, 19(2): 131-140.ZANG H L, ZHANG X P, HE D Y.The study on the silicon supplying capacity of paddy soils in the south China[J].Acta Pedologica Sinica,1982, 19(2):131-140.
[8] 刘鸣达,张玉龙.水稻土硅素肥力的研究现状与展望[J].土壤通报,2001, 32(4): 187-192.doi: 10.19336/j.cnki.trtb.2001.04.013.LIU M D, ZHANG Y L.Advance in the study of silicon fertility in paddy fields[J].Chinese Journal of Soil Science, 2001, 32(4): 187-192.doi: 10.19336/j.cnki.trtb.2001.04.013.
[9] 张玉龙,王喜艳,刘鸣达.植物硅素营养与土壤硅素肥力研究现状和展望[J].土壤通报, 2004, 35(6): 785-788.doi: 10.19336/j.cnki.trtb.2004.06.025.ZHANG Y L, WANG X Y, LIU M D.The research status and prospects about plant silicon nutrition and soil silicon fertility[J].Chinese Journal of Soil Science, 2004, 35(6): 785-788.doi: 10.19336/j.cnki.trtb.2004.06.025.
[10] 甘秀芹,江立庚,徐建云,董登峰,韦善清.水稻的硅素积累与分配特性及其基因型差异[J].植物营养与肥料学报,2004, 10(5): 531-535.doi: 10.11674/zwyf.2004.0516.GAN X Q, JIANG L G, XU J Y, DONG D F, WEI S Q.Characteristics and genotypic difference of silicon accumulation and distribution in rice[J].Journal of Plant Nutrition and Fertilizers, 2004, 12(5): 531-535.doi: 10.11674/zwyf.2004.0516.
[11] 何电源.土壤和植物中的硅[J].土壤学进展, 1980 (5): 1-10.HE D Y.Silicon in soils and plants[J].Advances in Soil Science,1980 (5): 1-10.
[12] KLOTZBTICHER T, MARXEN A, VETTERLEIN D, SCHNEIKER J, TURKE M, SINH N, MANH N H, CHIEN L, VILLAREAL S,BUSTAMANTE V J, JAHN R.Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia[J].Basic and Applied Ecology, 2015, 16(8): 665-673.doi: 10.1016/j.baae.2014.08.002.
[13] 陆福勇,江立庚,秦华东,唐茂艳.不同氮、硅用量对水稻产量和品质的影响[J].植物营养与肥料学报,2005, 11(6): 846-850.doi:10.11674/zwyf.2005.0622.LU F Y, JIANG L G, QIN H D, TANG M Y.Effects of nitrogen and silicon levels on grain yield and qualities of rice[J].Journal of Plant Nutrition and Fertilizers, 2005, 13(6): 846-850.doi: 10.11674/zwyf.2005.0622.
[14] 薛高峰,宋阿琳,孙万春,李兆君,范分良,梁永超.硅对水稻叶片抗氧化酶活性的影响及其与白叶枯病抗性的关系[J].植物营养与肥料学报,2010, 16(3): 591-597.doi: 10.11674/zwyf.2010.0311.XUE G F, SONG A L, SUN W C, LI Z J, FAN F L, LIANG Y C.Influences of silicon on activities of antioxidant enzymes in rice leaves infected by Xoo strain in relation to bacterial blight resistance[J].Journal of Plant Nutrition and Fertilizers, 2010, 18(3): 591-597.doi:10.11674/zwyf.2010.0311.
[15] 龚金龙,胡雅杰,龙厚元,常勇,葛梦婕,高辉,刘艳阳,张洪程,戴其根,霍中洋,许轲,魏海燕,李德剑,沙安勤,周有炎,罗学超.不同时期施硅对超级稻产量和硅素吸收、利用效率的影响[J].中国农业科学,2012, 45(8):1475-1488.doi: 10.3864/j.issn.0578-1752.2012.08.003.GONG J L, HU Y J, LONG H Y, CHANG Y, GE M J, GAO H, LIU Y Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, LI D J, SHA A Q, ZHOU Y Y, LUO X C.Effect of application of silicon at different periods on grain yield and silicon absorption, use efficiency in super rice[J].Scientia Agricultura Sinica, 2012, 45(8): 1475-1488.doi:10.3864/j.issn.0578-1752.2012.08.003.
[16] 杨仕华,廖琴.中国水稻品种试验与审定[M].北京:中国农业科学技术出版社,2005.YANG S H, LIAO Q.Experiment and validation of rice varieties in China[M].Beijing: China Agricultural Science and Technology Press,2005.
[17] 宋幼良,戴余有,吴殿星,包劲松,孙锋.10个晚粳糯稻突变体淀粉品质性状分析[J].核农学报,2015(9): 1718-1723.SONG Y L, DAI Y Y, WU D X, BAO J S, SUN F.Analysis of starch quality of ten late Japonica glutinous rice mutants[J].Acta Agriculturae Nucleatae Sinica, 2015, (9): 1718-1723.
[18] 蒋鹏,熊洪,张林,周兴兵,朱永川,刘茂,郭晓艺,徐富贤.施氮量和肥运筹模式对糯稻产量及品质的影响[J].作物研究,2015,29(6): 595-598.JIANG P, XIONG H, ZHANG L, ZHOU X B, ZHU Y C, LIU M, GUO X Y, XU F X.Effects of nitrogen application rate and fertilizer application model on yield and quality of japonica rice[J].Crop Research, 2015,29(6): 595-598.
[19] 金连登.我国有机稻米生产现状及发展对策研究[J].中国稻米,2007, 13(3): 1-4.JIN L D.Research on current status and development countermeasures of organic rice production in China[J].China Rice, 2007 13(3): 1-4.
[20] 庞乾林.稻米知识纵览[J].中国稻米,2004, 10(3): 44-47.PANG Q L.Overview of rice knowledge[J].China Rice, 2004, 10(3):44-47.
[21] 黎汉云,何祖才.稻米结构调整的实践和再思考[J].杂交水稻,2001, 16(5): 1-2.doi: 10.16267/j.cnki.1005-3956.2001.05.001.LI H Y, HE Z C.Practice and thinking in adjusting the structure of rice varieties[J].Hybrid Rice, 2001, 16(5): 1-2.doi: 10.16267/j.cnki.1005-3956.2001.05.001.
[22] 张佑宏,张国斌,王治虎,张舒,杨小林,张瑞洋.施用硅肥锌肥作基肥对稻瘟病发生的影响[J].中国农学通报, 2018, 34(8): 90-94.doi: 10.11924/j.issn.1000-6850.casb17090039.ZHANG Y H, ZHANG Gu B, WANG Z H, ZHANG S, YANG X L,ZHANG R Y.Silicon fertilizer and Zinc fertilizer as base fertilizer:effect on magnaporthe oryzae[J].Chinese Agricultural Science Bulletin, 2018, 34(8): 90-94.doi: 10.11924/j.issn.1000-6850.casb17090039.
[23] 张国良,戴其根,张洪程,凌励,刁守雨.硅肥和接种纹枯病菌对水稻膜脂过氧化和防御酶活性的影响[J].扬州大学学报(农业与生命科学版),2006, 27(1): 49-53.doi: 10.16872/j.cnki.1671-4652.2006.01.011.ZHANG G L, DAI Q G, ZHANG H C, LING L, DIAO S Y.Influences of silicon and inoculation with rhizoctonia solani on membrane lipid peroxidation and defence enzyme activities in rice leaves[J].Journal of Yangzhou University (Agricultural and Life Science Edition),2006, 27(1): 49-53.doi: 10.16872/j.cnki.1671-4652.2006.01.011.
[24] MA J F, YAMAJI N.A cooperative system of silicon transport in plants[J].Trends in Plant Science, 2015, 20(7): 435-442.doi: 10.1016/j.tplants.2015.04.007
[25 韩永强,文礼章,侯茂林.水稻施用硅肥对稻纵卷叶螟幼虫保护酶和解毒酶活性的影响[J].应用昆虫学报,2016, 53(3): 482-490.HAN Y Q, WEN L Z, HOU M L.Effects of providing additional silicon to host plants on the activity of protective and detoxifying enzymes in Cnaphalocrocis medinalis larvae[J].Entomological Knowledge,2016, 53(3): 482-490.
[26] MITANI-UENO N, YAMAJI N, MA J F.High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice[J].Plant and Cell Physiology, 2016, 57(12):2510-2518.doi: 10.1093/pcp/pcw163.
[27] PATI S, PAL B, BADOLE S, HAZRA G C, MANDAL B.Effect of silicon fertilization on growth, yield, and nutrient uptake of rice[J].Communications in Soil Science and Plant Analysis, 2016, 47(3):284-290.doi: 10.1080/00103624.2015.1122797.
[28] 卢维盛,李华兴,刘远金.施硅对水稻产量和稻米品质的影响[J].华南农业大学学报,2002, 23(1): 92-92.doi: 10.7671/j.issn.1001-411X.2002.01.028.LU W S, LI H X, LIU Y J.Effect of Si fertilization on yield and quallity of paddy rice[J].Journal of South China Agricultural University,2002, 23(1): 92-92.doi: 10.7671/j.issn.1001-411X.2002.01.028.
[29] 王力,孙影,张洪程,魏海燕,朱大伟,朱盈,徐栋,霍中洋.不同时期施用锌硅肥对优良食味粳稻产量和品质的影响[J].作物学报,2017, 43(6): 885-898.doi: 10.3724/SP.J.1006.2017.00885.WANG L, SUN Y, ZHANG H C, WEI H Y, ZHU D W, ZHU Y,XU D, HUO Z Y.Effect of Zn and Si fertilizers applied at different stages on yield and quality of Japonica rice with good eating quality[J].Acta Agronomica Sinica, 2017, 43(6): 885-898.doi: 10.3724/SP.J.1006.2017.00885.
[30] 金连登,张卫星,杨银阁,谢桐洲,施建华.我国有机水稻的标准化生产与风险控制[J].中国稻米,2015, 21(3): 16-19.JIN L D, ZHANG W X, YANG Y G, XIE T Z, SHI J H.Standardization production and risk control measures of organic rice production in China[J].China Rice, 2015, 21(3): 16-19.
[31] 张留斌,张跃东,尹黎峰,戴曲文,崔照平,谢国庆.丘陵地带有机稻米生产及产业化开发的实践[J].中国稻米, 2018, 24(1): 116-118.ZHANG L B, ZHANG Y D, YIN L F, DAI Q W, CUI Z P, XIE G Q.Practice of organic rice production and industrialization in hilly land[J].China Rice, 2018, 24(1): 116-118.
Response Characterisitics of Disease Resistance, Yield and Benefitof Glutinous Rice to Silicon Fertilization