发酵树叶及其在鸡生产应用的研究进展

崔艺燕,田志梅,邓 盾,刘志昌,容 庭,李家洲,马现永,陈卫东

(广东省农业科学院动物科学研究所/畜禽育种国家重点实验室/农业部华南动物营养与饲料重点实验室/广东省畜禽育种与营养研究重点实验室/广东畜禽肉品质量安全控制与评定工程技术研究中心,广东 广州 510640)

摘 要:我国树木资源丰富多样,但未充分开发利用。树叶的粗蛋白质、中性洗涤纤维、酸性洗涤纤维含量较高,黄酮和酚类物质含量丰富,但部分树叶含有单宁、植酸等抗营养因子。通过微生物发酵延长树叶使用时间、降解抗营养因子,转化难吸收的营养物质,将树叶改变为适口性好、无毒低毒、营养价值高的生物饲料,是绿色的饲料化技术方向之一。发酵树叶种类主要有银杏叶、辣木叶、桑叶等,使用的菌种主要是乳酸菌、霉菌、芽孢杆菌、酵母。研究表明,发酵后树叶保存时间延长,粗蛋白质含量提高,品质较好。发酵树叶黄酮、氨基酸、还原糖、多酚等活性物质含量较高,具有抗氧化活性。发酵树叶应用于鸡生产,可提高动物抗氧化能力,促进机体健康,改善肠道健康,提高生产性能及产品品质。发酵树叶用于饲养动物有利于资源循环,降低生产成本,解决环境污染等问题。

关键词:木本饲料;树叶;微生物;发酵;鸡

近年来,我国从其他国家进口大麦、小麦和高粱等谷物作为饲料,约70%的玉米用于饲料生产。未来,由于畜产品消费量的进一步增加,我国饲料原料需求将进一步增加。饲料原料需求的增加将对土地利用变化、饲料原料价格和环境产生巨大影响。饲料原料短缺,价格上涨,制约着我国畜牧业的发展。因此,开发与生产价低、营养丰富的非常规饲料十分重要,而在开发新资源的同时,更需要可持续的饲料生产。

我国森林面积为2.20亿hm2,森林覆盖率为22.96%,森林蓄积量为175.60亿m3[1]。我国林木/灌木资源丰富多样,是多树种国家,木本植物约有7 000多种,可饲用的约有400种[2]。我国果树树叶资源也很丰富,也是家畜良好的粗饲料。树叶占树木总重量的10%左右,树叶的粗蛋白质含量丰富,脂类、维生素及矿物质元素等含量高,可作为畜禽良好的蛋白质饲料。但目前仅个别地区对部分松针开发作为饲料原料,而大部分树叶只用作柴草,可见多数树叶资源没有得到充分开发利用。如果能利用林木树叶作为动物饲料,不仅解决畜牧业饲料短缺、饲料成本等问题,还能循环利用资源,解决资源浪费、污染等问题。但未经处理的树叶由于纤维素和木质素之间的联系,动物对其利用率很低。此外,许多树叶含有高含量的抗营养成分,如单宁、蜡质等,对于动物生长存在负面影响。

微生物发酵技术是目前的研究热点,能通过微生物发酵延长树叶使用时间、降解抗营养因子,转化难吸收的营养物质。发酵技术将树叶改变为适口性好、无毒低毒、营养价值高的生物饲料,是绿色的生态养殖技术[3]。但目前发酵树叶作为饲料的技术研究缺乏,在动物生产中应用较少。本文综述了树叶的营养成分、发酵菌种、发酵后成分变化及其在鸡生产中的应用,以期为发酵树叶对家禽饲料化利用提供依据。

1 树叶及其发酵菌种

1.1 树叶的营养成分

树叶发酵前后的的营养成分变化如表1所示。树叶的粗蛋白质(CP)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)含量变化范围较大,分别为7.15%~26.4%、16.47%~55.9%和8.61%~41%。这主要与树叶的种属有关,此外不同收获季节、不同种植地区的树叶营养成分也有所不同。

1.2 树叶发酵菌种

由表2可知,银杏叶主要使用黑曲霉、芽孢杆菌和酵母进行发酵。桑叶主要使用乳酸菌、酵母和食用真菌进行发酵。树叶使用菌株主要为10种乳酸菌(植物乳杆菌、费氏乳杆菌、乳酸乳球菌、保加利亚乳杆菌、嗜热链球菌、嗜酸乳杆菌、干酪乳杆菌、戊糖乳杆菌、戊糖片球菌、布氏乳杆菌)、5种霉菌(黑曲霉、米曲霉、绿色木霉、毛曲霉、红曲霉)、4种芽孢杆菌(凝结芽孢杆菌、地衣芽孢杆菌、纳豆芽孢杆菌、枯草芽孢杆菌)、3种酵母(产朊假丝酵母、热带假丝酵母、酿酒酵母),其他菌种使用较少,尤其是食用真菌。目前菌种的使用主要是为了保存树叶以及提高CP含量,对于降低抗营养因子、粗纤维的菌种研究较少。如何充分利用丰富的菌种发酵树叶,如何组合使用菌种改善发酵树叶营养价值,发酵菌种的作用机制以及菌种间的互作等还需要更多的研究。

2 树叶发酵效果

2.1 发酵树叶的营养成分变化

由表1可知,大部分发酵树叶的CP含量(13.18%~47.34%)较未发酵时提高,NDF、ADF、可溶性碳水化合物含量降低。戊糖乳杆菌发酵桑叶降低粗纤维含量(6.25%)[31]。发酵树叶CP含量较高,可作为蛋白质饲料。但发酵树叶主要报道了CP、NDF、ADF和可溶性碳水化合物含量,缺乏其他营养成分(粗脂肪、粗纤维、维生素、矿物质、氨基酸等)的研究报道,这不利于实际生产应用。发酵试验应当详细研究各种树叶的常规营养成分,做到成分清楚,利于研制饲料配方。

表1 树叶发酵前后的营养成分
Table 1 Nutrient composition of leaves before and after fermentation(DM, %)

树叶来源Source of leaves发酵前后Before or after fermentation干物质DM粗蛋白质CP中性洗涤纤维NDF酸性洗涤纤维ADF可溶性碳水化合物WSC文献References银杏Ginkgo biloba L. 前 18.62 53 41 [4]后47.34 45 33 [4]前10.37~14.26[5-6][5-6]辣木Moringa oleifera 前 24.88 15.06 31.03 21.02 10.07 [7]后17.38~19.15 26.78~30.5.9 17.80~22.37 [7]前24.5 26.0~26.4 25.7~28.7 17.6~19.0 9.55~9.90 [8]桑 Morus alba L. 前 31.50~35.66 18.72~18.79 22.21~27.82 15.03~16.11 12.23~13.69 [9]前29.44~36.17 20.94~21.92 16.47~21.87 8.61~12.43 1.69~2.75 [10]后29.53~37.12 20.06~21.94 16.73~20.06 8.80~10.92 1.10~2.28 [10]团花树Neolamarckia cadamba 前 26.12 12.48 31.13 22.37 4.49 [11]后13.18~13.58 26.53~28.73 19.79~21.67 [11]前21.7 10.7 23.7 15.6 4.69 [12]橡树Quercus. infectoria 前 9.92~13.0 53.4~55.9 34.1~36.7 11.2~18.2 [13]后10.2~14.9 54.1~56.5 35.3~35.8 10.1~15.8 [13]松树Pinus ponderosa 前 11.04 [14]后22.98[14]前7.72~10.05 28 22.56 1.34 [15-16]橄榄Olea europaea L 前 48.98 7.15~7.82 26.87 [17-18]后17.63[17-18]构树Broussonetia papyrifera 29.06 15.01 58.78 32.15 [19]前26.22 18.04 35.43 25.96 0.81 [20]后20.62~23.11 17.71~18.25 31.63~42.22 25.01~27.29 0.64~0.80 [20]刺槐Robinia pseudoacacia 前 30.93 21.73 35.69 24.63 1.25 [20]后32.09~34.11 20.83~21.94 35.01~43.80 24.05~28.41 1.31~153 [20]后14.34~17.99

表2 树叶发酵的菌种
Table 2 Strains of fermented leaves

菌种 Strains 文献References银杏 Ginkgo biloba L. Aspergillus niger(Gyx003、Gyx017、Gyx027、Gyx031、Gyx086、Gyx091、Gyx105、树叶来源Source of leaves[4-6, 21-24]XA-8、XA-10、Tu-A、Tu-B、Tu-C)、Bacillus coagulans、Candida utilis、 Bacillus licheniformis、Bacillus natto、Candida tropicalis、Geotrichum candidum、Aspergillus oryzae、Trichoderma viride、Bacillus subtilis、Lactobacillus plantarum辣木Moringa oleifera Lactobacillus plantarum、Lactobacillus farciminis、Lactococcuslactis、Weissellathailandensis、Aspergillus niger、Bacillus subtilis、Candida utilis桑 Morus alba L Candida tropicalis, Ganodermalucidum、Cordycepssinensis(Berk.)Sacc、Phellinus igniarius(L.ex Fr.)Quel、Ganoderma applanatum(Pers. Ex Wallr)Pat、Schizophyllum commune Franch、Cordycepsmilitaris、Antrodia camphorate、Lactobacillus bulgaricus、Streptococcus thermophilus、Lactobacillus acidophilus、Lactobacillus casei、Lactobacillus pentosus SS6、Lactobacillus plantarum, Lactobacillus buchneri[7, 25-26][9-10, 20, 27-31]黄漆木Dendropanax morbifera Léveille Bacillus subtilis [32]沙棘Hippophae rhamnoides Eurotium amsterlodami bsx001 [33]团花树Neolamarckia cadamba Lactobacillus plantarum、Lactobacillus farciminis [11, 34]菝葜 Smilax china L. Monascu spilosus、Saccharomyces cerevisiae、Bacillus species、Bifidobacterium bifidus、Aspergillus oryzae[35]柿子树Diospyros kaki Thunb Pediococcus pentosaceus、Rhodosporidium toruloides [36]橡树Betula pendula Klebsiella pneumoniae [13]番石榴Psidium guajava L. Monascusanka GIM 3.592、Saccharomyces cerevisiae GIM 2.139 [37]松树Pinus ponderosa Aspergillus niger [14]橄榄 Olea europaea L. Candida utilis、Candida tropicalis、Geotrichum candidum、Aspergillus niger、Aspergillus oryzae、Trichoderma viride[17-18]构树Broussonetia papyrifera Lactobacillus plantarum, Lactobacillus buchneri [20]刺槐Robinia pseudoacacia L. Lactobacillus plantarum, Lactobacillus buchneri [20]

2.2 发酵树叶的品质变化

发酵树叶的品质较好。乳酸菌显著降低了辣木的pH值[25]。乳酸杆菌和蔗糖发酵的桑叶含有较多的乳酸(4.46%~10.54%,P<0.05),较少的氨氮(0.03%~0.13%,P<0.01)、乙酸(0.73%~3.40%,P<0.05)、大肠菌群(<2.30 log CFU/g FM,P<0.01)和pH值(<4.40,P<0.01)[9]。团花树青贮样品的pH值(P<0.001)、氨氮含量较低(P<0.001),乳酸(P<0.001)、真蛋白质含量(P<0.001)、CP(P<0.05)较高[12]。植物乳杆菌发酵团花树显著降低了pH值、CP浓度[11]。植物乳杆菌a214显著降低饲料桑pH值, 但对刺槐及杂交构树效果不显著;添加植物乳杆菌(S37、FG1)和GFG(植物乳杆菌、布氏乳杆菌和纤维素酶)对降低杂交构树pH值作用显著。植物乳杆菌(F1、FG1)和GFG显著提高杂交构树青贮乳酸含量[20]

2.3 发酵树叶的抗营养因子变化

发酵树叶抗营养因子含量降低,可提高其作为动物饲料的营养价值,提高动物的生产力。橡树叶经肺炎克雷伯菌发酵处理后极显著降低28.32%~33.44%总单宁含量[13]。黑曲霉、枯草芽孢杆菌和产朊假丝酵母组合发酵后的辣木茎叶粉,水解单宁的含量显著降低17.18%~41.24%,黑曲霉及三菌混合发酵树叶的植酸含量显著降低12.02%~14.94%[26]。黑曲霉、米曲霉、绿色木霉和酵母菌(产朊假丝酵母菌、热带假丝酵母菌)降解橄榄叶残渣单宁酸,总单宁降解率最高为86.49%(P<0.05)[18]。植物乳杆菌发酵团花树降低了17.61%缩合单宁浓度(P>0.05)[11]

2.4 发酵树叶的活性物质变化

微生物发酵可提高树叶黄酮、氨基酸、还原糖、多酚等活性物质含量,改善抗氧化能力。活性成分高的发酵树叶应用于动物生产,可提高动物抗氧化能力,促进机体健康,提高生产性能。目前这方面研究较多的是银杏叶和桑叶,其他树叶研究较少。

2.4.1 银杏叶 微生物发酵提高了银杏叶黄酮、银杏内酯、氨基酸、香味物质的含量。凝结芽孢杆菌发酵银杏叶,总黄酮、银杏内酯A、银杏内酯B、银杏内酯C、银杏酸分别降低4.42%、4.30%、3.98%、10.24%、7.63%、79.31%,乙酸 和 乳酸含量急剧 增加[22]。黑曲霉发酵银杏叶总黄酮、还原糖、总氨基酸分别提高21.25%、66.23%[5]、21.25%[6],银 杏酸 降 低了97.30%[6]。黑曲霉GYX086发酵银杏叶产生强烈的香味,总黄酮、还原糖、CP、必需氨基酸和总氨基酸含量分别比对照显著提高26.03%、62.73%、14.58%、96.41%和16.49%[5]。银杏叶发酵后,异山奈素消失,出现庚酸、乙酯-十八碳烯酸等7种新成分[21]。地衣芽孢杆菌和纳豆芽孢杆菌发酵银杏叶的黄酮、总氨基酸、香气物质含量比发酵前分别提高了10.6%~16.7%、17.22%~31.05%、95.26%~98.68% [4]。 产 朊 假丝酵母和黑曲霉发酵银杏叶氨基酸、黄酮、香气物质含量比发酵前提高了95.44%、96.97%和98.45%[4]。发酵处理提高了银杏叶提取物的生物活性,从而提高了其对大鼠的抗氧化、抗凋亡和抗炎活性[21]

2.4.2 桑叶 微生物发酵提高桑叶黄酮、多酚、1-脱氧野尻霉素(DNJ)等含量。乳酸菌发酵桑叶的总多酚、总黄酮、绿原酸、DNJ分别显著提高14.95%、14.76%、14.80%、4.2%[28]。戊糖乳杆菌发酵桑叶,γ-氨基丁酸极显著提高413.65%,还原糖和总糖分别降低65.15%(P<0.05)、40.20%(P<0.01)[31]。干酪乳杆菌发酵桑叶提高抗氧化能力,DPPH、FRAP分别极显著提高8.66%、6.91%[10]。蛹虫草发酵桑叶提取物具有抗肥胖作用,可抑制脂肪肝内质网应激和脂肪肝内质网应激诱导的肝细胞凋亡[29]。火木层孔菌、蛹虫草、樟芝发酵的桑叶DNJ产量分别为0.359%、0.356%和0.337%,灵芝发酵桑叶DNJ提取率是桑叶的2.74倍[27]。嗜酸乳杆发酵桑叶提取物对5-氟尿嘧啶诱导的大鼠粘膜炎具有保护作用[30]

2.4.3 其他树叶 发酵橄榄叶渣中氨基酸总量比原叶渣增加22.0%,谷氨酸和天冬氨酸含量增加25.4%以上,黑曲霉和产朊曲霉发酵的纤维素酶活性最高(P< 0.05)[18]Trametes versicolor发酵橄榄叶显著提高漆酶活性[17]。黑曲霉发酵松针产生了纤维素酶、半纤维素酶、β-葡萄糖苷酶,总氨基酸和必需氨基酸分别显著提高89.68%、54.39%[14]。黑曲霉、枯草芽孢杆菌和产朊假丝酵母混合发酵的辣木茎叶还原糖发生显著变化,抗氧化活性显著提高[26]。米曲霉发酵菝葜叶中维生素C当量抗氧化能力最高,酿酒酵母和芽孢杆菌发酵的菝葜叶绿原酸含量显著高于新鲜菝葜叶,可提高酚酸、黄酮的提取率和清除自由基的能力[35]。与未发酵的番石榴叶相比,Monascus anka GIM 3.592 和酿酒酵母GIM 2.139发酵及复合酶处理使总酚、总黄酮、槲皮素和山奈酚的含量分别显著提高了2.1、2.0、13.0、6.8倍;发酵番石榴叶可溶性酚类提取物对α-葡萄糖苷酶具有较高的抗氧化活性和抑制作用[37]Eurotium amsterlodami bsx001发酵沙棘叶,总酚和黄酮含量显著增加,提高了发酵产物的抗氧化活性[33]。发酵黄漆木叶提取物增加了小鼠T淋巴细胞和B淋巴细胞的数量和增殖,增强非特异性免疫作用[32]。乳杆菌发酵芒果叶提取物减少RAW 264.7细胞中脂多糖产生的活性氧物质,随着浓度的增加,对蘑菇酪氨酸酶活性、亚硝酸盐清除的抑制作用增加[38]Rhodosporidium toruloides发酵的柿叶热水提取物显著降低3T3-L1细胞甘油三酯含量约11%[36]。树叶经过微生物发酵后,其活性物质含量均有所提高,同时改善了其抗氧化能力和免疫效果。

3 发酵树叶在鸡生产的应用

3.1 发酵树叶对鸡生长性能的影响

发酵树叶能够提高鸡的生长性能,改善血液生化、抗氧化指标。添加10%发酵橄榄叶渣(经黑曲霉和产朊假丝酵母菌发酵)可增加鸡体重120%,提高血清生化指标[18]。与对照组相比,3.5 g/kg发酵银杏叶能显著提高的肉鸡平均日采食量(ADFI)、日增重(ADG),最佳添加量为3.5~4.5 g/kg[23]。Zhang等[39]发现发酵银杏叶可提高肉仔鸡体重、饲料转化率以及血清和肝脏α-生育酚浓度,显著降低肝脏活性氧、蛋白羰基和丙二醛(MDA)含量。0.35%发酵银杏叶(经黑曲霉发酵)可显著降低鸡的增重比,随添加量增加,血清α-生育酚浓度线性增加(P<0.05)[40]。地衣芽孢杆菌或纳豆芽孢杆菌发酵银杏叶可改善肉鸡的饲料效率、促进胸腺和脾脏发育 [4]。经黑曲霉发酵的松针能显著提高肉仔鸡的血清和肝脏的超氧化物歧化酶(SOD)活性和抗氧化能力,显著降低MDA含量[14]。发酵银杏叶亦可显著降低脂多糖刺激的鸡ADG、ADFI减少[6]。发酵山杏叶可预防雏鸡啄癖,对肝肾无毒害[41]。发酵杜仲叶粉、杜仲叶粉均可显著降低蛋鸡血液总胆固醇、甘油三酯、低密度脂蛋白浓度,显著增加高密度脂蛋白浓度[42]。饲喂发酵构树叶对AA肉仔鸡的生长无不良影响[43]

3.2 发酵树叶对鸡肠道健康的影响

发酵树叶能提高鸡肠道消化能力、肠道形态、抗氧化能力,改善肠道健康。饲喂肉鸡发酵银杏叶,提高了乙醚提取物的表观总消化道保留率和十二指肠相对重量,不同程度地提高胰腺、小肠的抗氧化和消化酶活性,降低MDA含量[44]。此外,喂肉鸡发酵银杏叶可降低空肠和回肠蛋白羰基含量,改善肠道形态,显著提高空肠、回肠的SOD和谷胱甘肽活性,显著增加回肠乳酸菌数量,显著降低回肠和盲肠中的大肠杆菌、沙门氏菌数量[39]。Zhang等[6]研究表明,发酵银杏叶显著降低鸡(脂多糖刺激)的十二指肠和空肠相对重量、绒毛高度、隐窝深度、碱性磷酸酶活性和血浆D-木糖,显著降低十二指肠和空肠干扰素-γ、白细胞介素(IL)-4、IL-13、IL-18、诱导型一氧化氮合酶和十二指肠钠葡萄糖共转运蛋白1mRNA表达水平(P<0.01或P<0.05)。发酵杜仲叶粉显著降低肉鸡盲肠大肠杆菌数量(5.52%),显著提高乳酸菌数量(9.55%)[45]

3.3 发酵树叶对鸡肉品质的影响

发酵树叶具有改善鸡肉品质的作用,提高肌肉抗氧化能力,改善脂肪酸代谢和氨基酸含量。饲喂发酵银杏叶的肉鸡胸肌L*值、腿肌蒸煮损失和胸肌、腿肌滴水损失(24、48 h)均显著降低,肌肉中SOD、T-AOC的活性极显著增加,胸肌中2,2-叠氮二(3-乙基苯并噻唑啉-6-磺酸)ABTS和腿肌OH·、O2·-的清除活性显著降低[23]。发酵银杏叶降低腹部脂肪和肌肉MDA浓度,改善24 h的pH、滴水损失和烹饪损失,显著降低胸肌C16∶0、C18∶0浓度,极显著提高 C18∶2、C18∶ 3和 C20∶ 4的浓度[40]。地衣芽孢杆菌或纳豆芽孢杆菌银杏叶发酵物改善肉鸡的抗氧化功能以及胸肌嫩度,纳豆芽孢杆菌略优于地衣芽孢杆菌[4]。发酵杜仲叶组鸡肉中天门冬氨酸、苏氨酸、丝氨酸、丙氨酸、缬氨酸、亮氨酸、苯丙氨酸、赖氨酸、精氨酸、蛋氨酸、组氨酸、色氨酸总鲜味氨基酸和总氨基酸显著高于对照组,鸡肉棕榈油硬脂酸、饱和脂肪酸和花生四烯酸极显著高于对照组[45]

3.4 发酵树叶对鸡蛋品质的影响

发酵树叶能提高蛋鸡的蛋品质,发酵杜仲叶使用较多。饲粮添加发酵杜仲叶显著提高海兰褐蛋鸡的全期产蛋率,0.3%添加组的产蛋率最高、料蛋比最低,0.5%添加组显著增加平均蛋重,发酵杜仲叶显著降低蛋黄胆固醇浓度[42]。发酵杜仲叶(粪肠球菌)显著提高京红蛋鸡蛋中棕榈油酸7.79%、亚油酸16.54%、花生四烯酸组成比例7.79%,硬脂酸、胆固醇分别显著降低16.12%、12.4%[45]。发酵山杏叶可提高蛋鸡产量、蛋品质,降低蛋壳破损率、料蛋比[41]

4 展望

微生物发酵可以改善树叶的营养价值,提高活性物质含量,降低抗营养因子含量。发酵树叶应用于鸡生产,能够改善鸡的肠道健康、提高生产性能和产品质量。但是目前发酵树叶品种较少(14种),菌种使用种类不足(34种),应用于鸡生产的发酵树叶数量更是缺乏(6种)。发酵树叶的研究必将是一个长期的科学课题,包括菌种的筛选、发酵树叶营养价值的改善、树叶抗营养因子含量的减少等方法,以及发酵过程的规范和优化等。发酵树叶来源丰富、营养价值高,同时能减少资源浪费和环境污染,可解决饲料短缺的问题,对我国畜牧业的可持续发展起推动作用。发挥发酵树叶的优势,解决其不足,可实现社会效益、经济效益、生态效益多赢。

参考文献(References):

[1] 中华人民共和国国家统计局.中国统计年鉴2019[M].北京:中国统计出版社,2019.National Bureau of Statistical of China. China Statistical Yearbook 2019[M]. Beijing: China Statistics Press,2019.

[2] 岳文斌. 非粮型饲料高效生产技术[M]. 北京: 中国农业出版社,2004: 72.YUE W B. High efficiency production technology of non-grain feed[M].Beijing: China Agricultural Press, 2004: 72.

[3] 崔艺燕,田志梅,鲁慧杰,邓盾,马现永,陈卫东. 糠麸营养价值及其发酵饲料在动物生产中的应用[J]. 中国畜牧兽医,2019, 46(10):2902-2915. doi: 10.16431/j.cnki.1671-7236.2019.10.011.CUI Y Y, TIAN Z M, LU H J, DENG D, MA X Y, CHEN W D. Bran nutritional value and its fermented feed application in animal production[J]. China Animal Husbandry and Veterinary Medicine, 2019, 46(10):2902-2915.doi: 10.16431/j.cnki.1671-7236.2019.10.011.

[4] 高树峰. 发酵银杏叶制备新型生物饲料添加剂的研究[D]. 南京:南京林业大学,2014.GAO S F. The research of preparating new fashioned biological feed additives by fermenting the ginkgo leaves[D]. Nanjing: Nanjing Forestry University, 2014.

[5] WANG J, CAO F, Su E, ZHAO L, QIN W. Improvement of animal feed additives of ginkgo leaves through solid-state fermentation using Aspergillus niger[J]. International Journal of Biological Sciences,2018, 14(7): 736-747.doi: 10.7150/ijbs.24523.

[6] ZHANG X, ZHAO L, CAO F, AHAMAD H, WANG G, WANG T. Effects of feeding fermented ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks[J]. Poultry Science, 2013, 92(1): 119-130.doi: 10.3382/ps.2012-02645.

[7] WANG Y, WANG C, ZHOU W, YANG F, CHEN X, ZHANG Q. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage[J]. Frontiers in Microbiology, 2018, 9: 1817.doi: 10.3389/fmicb.2018.01817.

[8] WANG Y, HE L, XING Y, ZHENG Y, ZHOU W, PIAN R, YANG F, CHEN X, ZHANG Q. Dynamics of bacterial community and fermentation quality during ensiling of wilted and unwilted Moringa oleifera leaf silage with or without lactic acid bacterial inoculants[J].Msphere, 2019, 4(4): 319-341.doi: 10.1128/mSphere.00341-19.

[9] WANG Y, CHEN X, WANG C, HE L, ZHOU W, YANG F, ZHANG Q.The bacterial community and fermentation quality of mulberry(Morus alba)leaf silage with or without Lactobacillus casei and sucrose[J]. Bioresource Technology, 2019, 293: 122059.doi: 10.1016/j.biortech.2019.122059.

[10] HE L, ZHOU W, WANG C, YANG F, CHEN X, ZHANG Q. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage[J]. Journal of Dairy Science, 2019, 102(11): 9919-9931.doi:10.3168/jds.2019-16468.

[11] HE L, ZHOU W, WANG Y,WANG C, CHEN X, ZHANG Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1429-1436.doi:10.1111/jpn.12965.

[12] WANG C, HE L, XING Y, Zhou W, YANG F, CHEN X, ZHANG Q.Effects of mixing Neolamarckia cadamba leaves on fermentation quality, microbial community of high moisture alfalfa and stylo silage[J]. Microbial Biotechnology, 2019, 12(5): 869-878.doi:10.1111/1751-7915.13429.

[13] MOTAMEDIi H, AZIZI A, AHMADI M. Nutritive value of treated Quercus infectoria and Quercus libani leaves with the tannindegrading bacterium Klebsiella pneumoniae for ruminant feeding in vitro[J]. Journal of Applied Microbiology, 2019, 127(5): 1339-1348. doi: 10.1111/jam.14408.

[14] WU Q J, WANG Z B, WANG G Y,LI Y X, QI Y X. Effects of feed supplemented with fermented pine needles(Pinus ponderosa)on growth performance and antioxidant status in broilers[J]. Poultry Science, 2015, 94(6): 1138-1144.doi: 10.3382/ps/pev013.

[15] 张骞,毕台飞,田艳燕,张艳娜. 榆林市风沙区杨树叶和松针不同生长期营养成分分析[J]. 中国农学通报,2017, 33(26): 123-127.ZHANG Q, BI T, TIAN Y Y, ZHANG Y N. Nutritional component analysis of poplar leaves and pine needles of different growth periods in sandy region in Yulin[J].Chinese Agricultural Science Bulletin,2017, 33(26): 123-127.

[16] 谭秀丽,黄嵘峥,孙国君. 松针和苜蓿混合青贮对青贮品质动态变化的影响[J]. 黑龙江畜牧兽医,2015(19): 156-158. doi: 10.13881/j.cnki.hljxmsy.2015.1785.TAN X L, HUANG R Z, SUN G J. Effect of mixed pine needle and alfalfa silage on dynamic changes of silage quality[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(19): 156-158. doi:10.13881/j.cnki.hljxmsy.2015.1785.

[17] AYDINOGLU T, SARGIN S. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate[J]. Bioprocess and Biosystems Engineering, 2013, 36(2):215-222.doi: 10.1007/s00449-012-0777-2.

[18] XIE P J, HUANG L X, ZHANG C H, ZHANG Y L. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive[J]. Journal of Applied Microbiology,2016, 121(1): 28-40.doi: 10.1111/jam.13131.

[19] SI B W, TAO H, ZHANG X L,GUO J P, CUI K, TU Y, DIAO Q Y .Effect of Broussonetia papyrifera L.(paper mulberry)silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows[J]. Asian-Australasian Journal of Animal Sciences, 2018,31(8):1259-1266.doi: 10.5713/ajas.17.0847.

[20] 刘晓婧,张颖超,杨富裕. 乳酸菌添加剂对3种典型木本饲料青贮效果的影响[J]. 饲料工业,2019,40(2):16-21.doi:10.13302/j.cnki.fi.2019.02.004.LIU X J, ZHANG Y C, YANG F Y. Effects of lactic acid bacteria additives on the fermentation quality of three woody forages[J].Feed Industry, 2019,40(2):16-21. doi:10.13302/j.cnki.fi.2019.02.004.

[21] ISMAIL A F, EL-SONBATY S M. Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain[J]. Journal of Photochemistry and Photobiology, 2016, 158: 154-163. doi: 10.1016/j.jphotobiol.2016.02.039.

[22] LIU X, CAO G, ZHOU J, YAO X, FANG B. The effects of Bacillus coagulans-fermented and non-fermented Ginkgo biloba on abdominal fat deposition and meat quality of Peking duck[J]. Poultry Science,2017, 96(7): 2264-2273.doi: 10.3382/ps/pex017.

[23] NIU Y, WAN X L, ZHANG X H, ZHAO L G, HE J T, ZHANG J F,ZHANG L L, WANG T. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality,and antioxidant status of breast and thigh muscles in broiler chickens[J]. Poultry Science, 2016, 96(4): 869-877.doi: 10.3382/ps/pew313.

[24] 周昊,王成章,叶建中,陈虹霞,陶冉. 混菌固态发酵银杏叶渣生产蛋白饲料的研究[J]. 饲料工业,2014(S1): 90-95. doi:10.13302/j.cnki.fi.2014.z1.026.ZHOU H, WANG C Z, YE J Z, CHEN H X,TAO R. Production conditions of protein feeds by solid-state and mixed-bacteria fermentation of gingko leaf dregs[J]. Feed Industry, 2014(S1): 90-95. doi: 10.13302/j.cnki.fi.2014.z1.026.

[25] WANG Y, HE L, XING Y, ZHOU W, PIAN R, YANG F, CHEN X,ZHANG Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures[J]. Bioresource Technology, 2019,284: 349-358.doi: 10.1016/j.biortech.2019.03.139.

[26] 石鸿辉,苑广伟,廖正睿,郭霖,李悦,王磊,陈晓阳. 不同菌种发酵对辣木茎叶粉的营养价值及其抗氧化活性的影响[J]. 食品工业科技,2019, 40(9): 91-97.doi: 10.13386/j.issn1002-0306.2019.09.017.SHI H H, YUAN G W, LIAO Z R, GUO L, LI Y, WANG L, CHEN X Y. Effects of fermentation with different strains on the nutritional value and antioxidant activity of Moringa oleifera stem and leaf powder[J].Science and Technology of Food Industry, 2019, 40(9): 91-97. doi:10.13386/j.issn1002-0306.2019.09.017.

[27] JIANG Y, WANG C, JIN C, JIA J, GUO X, ZHANG G, GUI Z.Improved 1-Deoxynojirimycin(DNJ)production in mulberry leaves fermented by microorganism[J]. Brazilian Journal of Microbiology,2014, 45(2): 721-729.doi: 10.1590/s1517-83822014000200048.

[28] LEE H, LEE H, CHOI Y, LEE J. Effect of lactic acid bacteriafermented mulberry leaf extract on the improvement of intestinal function in rats[J]. Korean Journal for Food Science of Animal Resources, 2017, 37(4): 561-570.doi: 10.5851/kosfa.2017.37.4.561.

[29] LEE M R, BAE S J, KIM J E, SONG B R, CHOI J Y, PARK J J,PARK J W, KANG M J, CHOI H J, CHOI Y W, KIM K M, HWANG D Y. Inhibition of endoplasmic reticulum stress in high-fat-dietinduced obese C57BL/6 mice: Efficacy of a novel extract from mulberry(Morus alba)leaves fermented with Cordyceps militaris[J].Laboratory Animal Research, 2018, 34(4): 288-294.doi: 10.5625/lar.2018.34.4.288.

[30] OH N S, LEE J Y, LEE J M, LEE K W, KIM Y. Mulberry leaf extract fermented with Lactobacillus acidophilus A4 ameliorates 5-fluorouracil-induced intestinal mucositis in rats[J]. Letters in Applied Microbiology, 2017, 64(6): 459-468.doi: 10.1111/lam.12741.

[31] ZHONG Y, WU S, CHEN F,HE M, LIN J. Isolation of high gammaaminobutyric acid-producing lactic acid bacteria and fermentation in mulberry leaf powders[J]. Experimental and Therapeutic Medicine,2019,18(1):147-153.doi: 10.3892/etm.2019.7557.

[32] BIRHANU B T, KIM J, HOSSAIN M A,CHOI J, LEE S, PARK S. An in vivo immunomodulatory and anti-inflammatory study of fermented Dendropanax morbifera Léveille leaf extract[J]. BMC Complementary and Alternative Medicine, 2018,18(1):222. doi:10.1186/s12906-018-2282-x.

[33] GU Q, DUAN G, YU X. Bioconversion of flavonoid glycosides from Hippophae rhamnoides leaves into flavonoid aglycones by Eurotium amstelodami[J]. Microorganisms, 2019,7(5): 122.doi: 10.3390/microorganisms7050122.

[34] HE L, WANG C, XING Y,ZHOU W, PIAN R, YANG F, CHEN X,ZHANG Q. Dynamics of proteolysis, protease activity and bacterial community of Neolamarckia cadamba leaves silage and the effects of formic acid and Lactobacillus farciminis[J]. Bioresource Technology, 2019,294:122127.doi: 10.1016/j.biortech.2019.122127.

[35] KIM J, PARK T, YANG S,SUH J, SHIM S. Microbial bioconversion and processing methods enhance the phenolic acid and flavonoids and the radical scavenging capacity of Smilax china L. leaf[J]. Journal of the Science of Food and Agriculture, 2016,96(3):878-885.doi: 10.1002/jsfa.7160.

[36] LEE N K. Oleaginous yeast Rhodosporidium toruloides as a tool for rapid evaluation of anti-obesity candidates: Inhibitory effect of persimmon leaf fermentate on lipid accumulation[J]. Journal of Microbiology and Biotechnology, 2017,27(10):1773-1777.doi:10.4014/jmb.1707.07062.

[37] WANG L, LUO Y, WU Y,LIU Y, WU Z. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents,flavonoid aglycones contents and bio-activities of guava leaves tea[J]. Food Chemistry, 2018,264:189-198.doi: 10.1016/j.foodchem.2018.05.035.

[38] PARK A, KU T, YOO I. Antioxidant properties of fermented mango leaf extracts[J]. Journal of Cosmetic Science, 2015,66(1):1-13.

[39] ZHANG X H, SUN Z Y, CAO F L,AHMAD H, YANG X H, ZHAO L G, WANG T. Effects of dietary supplementation with fermented ginkgo leaves on antioxidant capacity, intestinal morphology and microbial ecology in broiler chicks[J]. British Poultry Science, 2015,56(3):370-380. doi: 10.1080/00071668.2015.1030590.

[40] CAO F L, ZHANG X H, YU W W,ZHAO L G, WANG T. Effect of feeding fermented Ginkgo biloba leaves on growth performance,meat quality, and lipid metabolism in broilers[J]. Poultry Science, 2012,91(5):1210-1221.doi: 10.3382/ps.2011-01886.doi:10.1080/00071668.2015.1030590.

[41] 李洁,于文清,唐冠敏,李旺,彭艳芳. 山杏叶发酵物对蛋鸡生产性能和生化指标的影响[J]. 饲料研究,2011(12):75-77.doi:10.13557/j.cnki.issn1002-2813.2011.12.024.LI J, YU W Q, TANG G M, LI W, PENG Y F. Effects of Apricot leaf fermentation performance and biochemical indexes of laying hens[J].Feed Research, 2011(12): 75-77. doi: 10.13557/j.cnki.issn1002-2813.2011.12.024.

[42] 李凤龙,任爱军,蔡国鹤,曲正祥,王哲鹏,苏印泉,高玉鹏,闵育娜. 发酵杜仲叶粉对蛋鸡生产性能、鸡蛋胆固醇和脂质代谢的影响[J]. 西北农业学报,2016, 25(8):1137-1143.doi: 10.7606/j.issn.1004-1389.2016.08.004.LI F L, REN A J, CAI G H, QU Z X, WANG Z P, SU Y Q, GAO Y P, MIN Y N. Effects of fermented-eucommia-ulmoides leaves on performance, egg quality, and lipid metabolism of layers[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(8): 1137-1143.doi: 10.7606/j.issn.1004-1389.2016.08.004.

[43] 熊罗英,蔡仁贤,刘艳芬. 发酵构树叶对肉仔鸡生长及代谢性能的影响[J]. 饲料研究,2012(5):51-54.doi: 10.13557/j.cnki.issn1002-2813.2012.05.019.XIONG L Y, CAI R X, LIU Y F. Effects of fermented leaves on growth and metabolic performance of broilers[J]. Feed Research, 2012(5):51-54. doi: 10.13557/j.cnki.issn1002-2813.2012.05.019.

[44] NIU Y, ZHANG J F, WAN X L, HUANG Q, HE J T, ZHANG X H,ZHAO L G, ZHANG L L, WANG T. Effect of fermented Ginkgo biloba leaves on nutrient utilisation, intestinal digestive function and antioxidant capacity in broilers[J]. British Poultry Science, 2019,60(1):47-55.doi: 10.1080/00071668.2018.1535166.

[45] 段明房,胡红伟,闫凌鹏,麻啸涛,邢俊德,杨京娥,党亚朋,庄自佳.发酵杜仲叶粉对蛋鸡蛋、肉品质和风味及盲肠微生物的影响[J]. 中国饲料,2017(6):19-23. doi: 10.15906/j.cnki.cn11-2975/s.20170605.DUAN M F, HU H W, Y L P, MA X T, XING J D, YANG J E, DANG Y P,ZHUANG Z J. Effects of fermented Eucommia ulmoides leaves on egg quality, chicken quality and caecum microflora in layers[J]. China Feed, 2017(6): 19-23. doi: 10.15906/j.cnki.cn11-2975/s.20170605.

Research Progress in Fermented Tree Leaves and Its Application in Chicken Production

CUI Yiyan, TIAN Zhimei, DENG Dun, LIU Zhichang, RONG Ting,LI Jiazhou, MA Xianyong, CHEN Weidong
(Institute of Animal Science, Guangdong Academy of Agricultural Sciences/ State Key Laboratory of Livestock and Poultry Breeding/ Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture/Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China)

Abstract:Tree resources are rich and diverse in China, but they has not been fully developed and utilized. The contents of crude protein, neutral detergent fiber and acid detergent fiber in tree leaves are high, as well as the contents of flavonoids and phenols. However, some leaves contain anti-nutritional factors such as tannin and phytic acid. Microbial fermentation prolongs the use of leaves, degrades anti-nutritional factors, and transforms nutrients that are difficult to be absorbed. It is one of the green feed processing technologies that can change the leaves into biological feed with good palatability, non-toxicity, low toxicity and high nutritional value. At present, the main types of fermented leaves are ginkgo leaves, moringa leaves, and mulberry leaves. The strains used are mainly lactic acid bacteria, mould, bacillus and yeast. After fermentation, the preservation time of the leaves is prolonged, the crude protein content is improved, and the quality is better.Fermented leaves have higher contents of flavonoids, amino acids, reducing sugars, polyphenols and other active substances,which have strong antioxidant activity. The application of fermented leaves in chicken production can improve the antioxidant capacity of animals, promote body and intestinal health, and improve growth performance and production quality. Fermented tree leaves used for feeding animals are beneficial for resource recycling, which reduce production costs and solve environmental pollution.

Key words: woody feed;leaves; microorganism; fermentation; chicken

中图分类号:S816.15

文献标志码:A

文章编号:1004-874X(2020)01-0123-08

崔艺燕,田志梅,邓盾,刘志昌,容庭,李家洲,马现永,陈卫东.发酵树叶及其在鸡生产应用的研究进展[J].广东农业科学,2020,47(1):123-130.

收稿日期:2019-10-18

基金项目:广东省现代农业产业技术体系建设项目(2018LM2153);广东省现代农业产业技术体系饲料产业创新团队项目(2019KJ115) ;广东省农业科学院人才项目(201803) ;“十三五”国家重点研发计划项目(2016YFD0501210)

作者简介:崔艺燕(1987—),女,硕士,助理研究员,研究方向为动物营养与饲料科学、生态养殖与环境控制,E-mail:958117076@qq.com

通信作者:马现永(1972—),女,博士,研究员,研究方向为动物营养与饲料科学、生态养殖与环境控制,E-mail:407986619@qq.com

(责任编辑 崔建勋)