-
香大蕉(Musa spp.)不仅是著名的热带、亚热带水果,也是一些发展中国家和地区重要的粮食作物。现有的大部分香蕉栽培品种是由二倍体野生尖叶蕉(Musa acuminata,AA group)和长梗蕉(Musa balbisiana,BB group)经过种内和种间杂交进化而来的[1]。中国是香蕉的起源地之一,在云南[2-3]、 广东[4]、海南[5]、福建[6-7] 和广西[8-9] 等地发现了AA、BB、AB型野生蕉。我国的香蕉栽培已有2000 多年历史,栽培蕉尤其是香牙蕉类(Musa AAA Cavendish subgroup)的品种资源十分丰富[10]。 除了香牙蕉类主栽品种,我国的三倍体栽培蕉类型还包括粉蕉(Musa ABB Pisang Awak)、大蕉(Musa ABB)和龙牙蕉(Musa AAB Silk)。此外,二倍体栽培蕉如贡蕉(Musa AA Pisang Mas)等在部分香蕉产区也有少量种植。据联合国粮农组织(FAO) 统计,2018 年我国香蕉的种植面积为38.32 万hm2、 产量达1157.79 万t,是世界上仅次于印度的第二大生产国。近年来,我国乃至全世界的香蕉生产均面临多种病虫害的威胁,其中由尖孢镰刀菌古巴专化型(Fusarium oxysporum f.sp.cubense,Foc)引起的香蕉枯萎病是主要病害之一[11]。 香蕉枯萎病又称巴拿马病、黄叶病,是一种毁灭性土传病害。其发病过程为:病原真菌Foc侵染并定殖在香蕉植株的根部,接着通过球茎进一步扩散到假茎的木质部导管,堵塞导管并使得营养物质和水分向地上部的运输受阻,最终造成整个植株枯萎死亡。香蕉枯萎病的内部症状起初是根系和球茎的维管组织变褐,进而假茎甚至是果穗轴的维管束变为浅黄、红棕或深褐的连续条带。黄化进程由老叶发展至新叶,叶片逐渐在叶柄处垂下并倒挂在假茎外围,与此同时从假茎基部抽生出许多受感染的吸芽。受感染植株的叶片也会起皱和扭曲;假茎也可能发生纵裂。当植株死亡后,病原真菌Foc的生长从木质部扩散至周围组织中,并在植株腐烂时形成许多厚垣孢子回到土壤中。Foc能以厚垣孢子的形式存活于受感染植株的残骸或其他寄主植物的根系中,并籍此在土壤中持续生存30 年以上[12]。19世纪70年代,澳大利亚首次报道香蕉枯萎病的发生[13],之后巴拿马和哥斯达黎加也相继报道[14]。目前已发现Foc的4个生理小种,其中1号生理小种主要侵染Gros Michel(AAA)、Silk(AAB)、Pome(AAB)和Pisang Awak(ABB)。 20世纪50年代Foc 1号生理小种导致中美洲的香蕉种植区大面积发病,1960年香蕉枯萎病已经传播至哥伦比亚和非洲西部地区,50多年来已摧毁中、南美洲约4万hm2以Gros Michel为主栽品种的香蕉种植园[15]。Foc 2号生理小种主要侵染Bluggoe(ABB) 和其他相近的煮食香蕉。Foc 3号生理小种只侵染野生蕉(Heliconia spp.)[16],对香蕉栽培品种不构成威胁。1967年在我国台湾地区发现Foc 4号生理小种[17],它不仅侵染Cavendish,还侵染所有对1号和2号生理小种感病的品种[18],是迄今为止致病力最强的香蕉枯萎病菌。根据Foc 4号生理小种发生的地域特征和对温度的适应范围,又可将其进一步划分为亚热带4号生理小种(Subtropical race 4,Foc STR4)和热带4号生理小种(Tropical race 4,Foc TR4)[19]。由于缺乏有效的检疫措施,目前Foc TR4 已经从亚洲环太平洋地区扩散至中东和大湄公河次区域[20]。仅将Foc划分为不同的生理小种并不能反映不同Foc菌株之间的遗传关系和变异性。真菌的营养亲和性(Vegetative compatibility)或异核体亲和性是指任何两菌株接触、融合并交换细胞质或核物质的遗传能力,具有这种相互亲和现象的Foc菌株就定义为一个营养亲和群(Vegetative compatibility groups,VCGs)。根据Foc菌株的营养亲和性,可以将其划分为24个VCGs[21]。鉴于Foc缺乏有性生殖,因此不同的VCGs可以代表遗传分离的群体。值得注意的是,不同生理小种的Foc菌株可能属于同一个VCGs,同一个生理小种的Foc菌株也可能划分为多个不同的VCGs。据报道,Foc TR4菌株的VCGs有01213、01216和01213/16[22]。 本文综述了各科研院所尤其是广东省农业科学院果树研究所近年来在香蕉枯萎病菌侵染过程以及香蕉枯萎病致病机理、抗性机制、抗病品种选育、抗性种质筛选和抗病性鉴定、防治等多个前沿领域取得的研究进展,并对今后的研究方向进行展望。
-
1 我国香蕉枯萎病的发生历史
-
1967 年,在我国台湾地区发现Foc 4 号生理小种[17],香蕉枯萎病的迅速蔓延给该地区的香蕉生产带来了毁灭性打击。据FAO统计,1970 年台湾香蕉的种植面积为39013 hm2,到1980 年已萎缩至9268 hm2。20 世纪70 年代,Foc 1 号生理小种造成我国华南地区的龙牙蕉和粉蕉种植园大面积发病,部分种植园发病率超过60%[23]。1996 年, 在广东广州番禺万顷沙镇的香牙蕉种植园发生香蕉枯萎病,经鉴定病原菌为Foc 4 号生理小种[24], 随着该病的迅速蔓延,全市香蕉产区的发病面积从2000 年97.33 hm2激增至2003 年3855.93 hm2, 发病严重的蕉园只能改种其他作物[25]。2000 年, 林时迟等[26]首次报道福建省漳州地区的粉蕉种植园发生香蕉枯萎病,经初步鉴定病原菌为Foc 1 号生理小种;几年后该地区的香牙蕉种植园也发生香蕉枯萎病[27]。2001 年开始,海南省三亚市也报道粉蕉和香牙蕉种植园发生香蕉枯萎病,经鉴定该市同时存在Foc 1 号和4 号生理小种[28]。莫贱友等[29]2006 年对广西香蕉主产区的发病情况进行调查,结果未发现Foc 4 号生理小种[30]。2012 年广西个别香牙蕉种植园发生香蕉枯萎病,经鉴定病原菌为Foc 4 号生理小种[31]。2009 年,云南省西双版纳勐腊县香蕉产区由于种植从海南引入的带菌种苗,导致15 万株香牙蕉感病,其后该病在当地迅速蔓延,到2016 年已有近3847 hm2香牙蕉种植园发病[32]。目前,国内各香蕉主产区均有报道发生Foc 4 号生理小种引起的香蕉枯萎病,该病已经成为制约我国香蕉生产的最主要因素[33]。Li等[34] 对来自国内各香蕉主产区的80 个Foc分离菌株进行分析鉴定,其中大部分菌株为Foc TR4(VCG 01213/16)。
-
2 香蕉枯萎病菌的侵染过程
-
Li等[35]利用绿色荧光蛋白(Green fluorescent protein,GFP)标记的Foc 4 号生理小种研究香蕉枯萎病菌的侵染过程,结果发现接种后3~6 d, 越来越多厚垣孢子附着在巴西香蕉(Musa AAA Cavendish subgroup)假植苗的根部并萌发形成芽管, Foc 4 号生理小种孢子萌发后即定殖于根部;接种后11 d,根冠及根尖伸长区均可观察到交织分布的菌丝;接种后15 d,GFP标记的病原菌大量定殖于根部,同时大部分根被菌丝覆盖;接种后25 d,真菌菌丝和病原菌孢子已占据球茎的维管组织。上述观察结果与香蕉试管苗的发病过程相吻合。总的来说,Foc 4 号生理小种可以直接侵入香蕉根部的表皮细胞,侵染位点包括根冠及根尖伸长区的表皮细胞、侧根基部的自然开裂处等,但不包括人为伤口和木质化程度较高的一级侧根;在根系组织内部, 真菌菌丝能穿透细胞壁并在细胞内部或细胞间隙进一步生长;Foc 4 号生理小种还能在根系和球茎中产生新的孢子。 另一方面,超微结构观察结果也表明,巴西香蕉假植苗根部接种Foc TR4 后7 d,球茎中柱髓部和皮层薄壁组织细胞的细胞壁断裂溶解,出现严重的质壁分离现象;高尔基体肿胀,排列疏松,结构开始逐渐分解;线粒体出现变形,双层膜破裂,线粒体嵴的数量明显减少[36]。
-
3 香蕉枯萎病的致病机理
-
3.1 致病相关基因
-
在植物病原菌的致病过程中,G蛋白偶联受体(G-protein-coupled receptors)跨膜转换信号是细胞信号转导的主要方式[37]。G蛋白由 α、β 和 γ 亚基组成,其中 α 亚基的分子量最大,具有鸟苷酸结合位点,通过GTP结合态(激活态)和GDP结合态(失活态)间的转换行使信息传递功能,调控细胞对外界环境刺激的应答[38]。李春雨等[39]分别克隆了Foc 1 号生理小种和Foc TR4 编码G蛋白 α 亚基的fga1 基因,发现两者核苷酸序列完全相同, 其中Foc 1 号生理小种的fga1 基因保守性很强,而Foc TR4 的fga1 基因存在可变剪切,这可能是Foc TR4 致病性较强的原因之一。 麦角甾醇代谢途径是真菌的次生代谢途径, 是孢子早期发育萌发过程中必不可少的代谢途径之一[40]。Deng等[41]利用基于iTRAQ技术的比较蛋白质组学方法研究了Foc TR4早期发育阶段蛋白质表达谱的变化规律,发现参与麦角甾醇合成代谢的所有差异表达蛋白均上调,说明该代谢途径对Foc TR4 的早期发育起重要作用。在此基础上,鉴定了甾醇C-24甲基转移酶(C-24 sterol methyltransferase)、细胞色素P450甾醇14α-去甲基化酶(cytochrome P450 lanosterol C-14α-demethylase)、羟甲基戊二酰辅酶A合成酶(hydroxymethylglutaryl-CoA synthase)和甾醇C-4甲基氧化酶(C-4 sterol methyl oxidase)等4个在麦角甾醇生物合成途径中具有关键作用的酶,并加以验证。 CP(Cerato-platanin)蛋白是真菌特有的一类蛋白,它不仅是激活寄主植物产生防卫反应的激发子, 而且作为导致植物发病的毒性因子在病原菌致病过程中起到重要作用[42]。Liu等[43] 报道,Foc TR4 的CP蛋白编码基因FocCP1 在孢子萌发阶段和侵染初期表达量逐渐升高,直至侵染24 h后表达量才开始逐渐下降。此外,重组FocCP1 蛋白能使香蕉叶片产生坏死斑,FocCP1 基因敲除突变体的致病力显著下降。上述研究结果表明,FocCP1 在Foc TR4 的侵染过程中起着重要作用。
-
3.2 致病毒素
-
植物病原真菌分泌的毒素与其致病力密切相关。Li等[44]对来自国内多个地区的Foc 1 号和4 号生理小种进行分析测定,发现从供试所有菌株中均可检测到镰刀菌酸(Fusaric acid,FSA)和白僵菌素(Beauvericin,BEA)。在此基础上,进一步研究FSA和BEA对香蕉原生质体和香蕉试管苗的毒性, 发现毒性测试结果与香蕉假植苗接种对应Foc菌株后的病情指数相吻合。Liu等[45]研究表明,FSA合成相关基因(Fusaric acid biosynthetic gene,FUB)的缺失突变体不仅FSA的合成能力下降,致病力也显著降低。巴西香蕉假植苗接种Foc TR4 后,FSA在植株体内的扩散速度要快于Foc TR4 的侵染速度, 且FSA预处理假茎加速了Foc TR4 的侵染过程。在制备香蕉胚性细胞悬浮系原生质体的基础上,通过细胞生物学相关实验证实,FSA不仅能在高浓度下作为毒性因子抑制O2 吸收,也能在低浓度下起到呼吸解偶联剂的作用;高浓度的FSA会引起香蕉线粒体功能紊乱,并伴随活性氧(ROS)的爆发,引起细胞大量死亡。
-
4 香蕉对枯萎病的抗性机制
-
4.1 基础抗性和R基因决定的抗性
-
植物的抗病性主要由两类免疫受体介导: 一类是定位于细胞表面的模式识别受体(Pattern recognition receptors,PRRs),识别病原相关分子模式(Pathogen-associated molecular patterns,PAMPs) 后触发基础免疫(Pattern-triggered immunity, PTI); 另一类是细胞内部抗病基因(Resistance genes,R基因)编码的蛋白,抗病蛋白多属于NBSLRR(Nucleotide binding site-leucine-rich repeats) 结构类型,它们识别病原菌效应蛋白后激活小种专化抗性,即效应因子触发的免疫(Effector-triggered immunity,ETI),这种抗性往往伴随局部细胞死亡, 即超敏反应(Hypersensitive response,HR)[46]。Li等[47]分析了巴西香蕉及其抗病突变体农科1 号香蕉接种Foc TR4 后的转录组数据,发现抗病突变体中大部分PTI相关基因的表达显著上调;相比较而言,R基因中仅编码RIN4/RPM1 复合体[48]的基因表达量较高。PTI和ETI不仅共用某些信号元件, 如Ca2+ 和促分裂原活化蛋白激酶(MAPK)级联信号途径等,而且都会引发转录重编程和产生质外体ROS[49],但ETI诱导的抗性反应比PTI更强[50]。 NADPH氧化酶是植物产生ROS的主要来源之一[51]。 Li等[47]证实抗病突变体农科1 号香蕉接种Foc TR4 后NADPH氧化酶基因表达上调;与之相对应的是, ROS清除系统相关基因在感病野生型中的表达量较高,说明在Foc TR4 侵染早期,抗病突变体的ROS水平高于感病野生型。此外,抗病突变体中参与茉莉酸(JA)生物合成信号传导途径的脂氧合酶(LOX)、 丙二烯氧化物合酶(AOS)基因的表达水平增加, 同时还发现抗病突变体中乙烯(ET)信号基因和转录因子,如乙烯不敏感受体(Ethylene insensitive 3, EIN3)和类乙烯不敏感受体(Ethylene insensitive 3-like 1,EIL1)的表达量也上调,说明香蕉对Foc TR4 的抗性主要由JA和ET信号传导途径介导。 PAMPs主要是指病原微生物表面高度保守的分子结构,而这些分子结构通常是病原微生物生存或致病性所必需的。PAMPs主要分为多肽类和糖类两种。真菌的几丁质属于后者,是由N-乙酰-D-葡糖胺以 β-1, 4 糖苷键构成的均一多糖。几丁质酶系包括内切几丁质酶、外切几丁质酶和N-乙酰-β-D氨基葡萄糖苷酶等,其中来自哈茨木霉(Trichoderma harzianum)的内切几丁质酶对多种病原菌具有强拮抗作用[52]。Hu等[53]构建哈茨木霉内切几丁质酶基因chit42 的过表达载体并转化夫人指香蕉(Musa spp.AA group),同时利用离体系统和盆栽系统进行抗病性鉴定,结果表明转基因植株对香蕉枯萎病的抗性增强,接种Foc TR4 后2 个月仍然表现出耐受性。
-
4.2 诱导抗性
-
与R基因决定的抗性不同, 系统获得抗性(Systemic acquired resistance,SAR)是接种致病菌非亲和小种或非致病菌后引发的防卫反应,继而使植株对多种病原菌的侵染产生广谱抗性[54]。Wu等[55]利用香蕉-Foc互作的离体系统,在感病品种巴西香蕉小植株的第2 片叶接种Foc 1 号生理小种,使其对后续接种的Foc TR4 产生SAR。结果表明,利用Foc的非亲和小种作为诱导因子产生的诱导抗性是水杨酸(SA)介导的SAR,在分子水平上与“MNPR1A”和“MNPR1B”表达上调及其后的PR-1 和PR-3 表达上调有关,在生理生化水平上与苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、 多酚氧化酶(PPO)和超氧化物岐化酶(SOD)等防御酶活性的提高有关。
-
5 香蕉抗病品种的选育
-
到目前为止,香蕉杂交育种取得的进展十分有限,这是由于现有的香蕉栽培品种绝大多数是三倍体,三倍体之间无论自花授粉还是异花授粉均得不到种子;三倍体(母本)与二倍体(父本) 杂交也只限于某些品种,且只有极少量种子。1993 年,位于洪都拉斯的农业研究基金会(Fundación Hondureña de Investigación Agrícola,FHIA) 通过杂交育种获得基因型为AAAB的四倍体杂交后代FHIA-01(又称金手指)[56],它不仅抗Foc 1 号生理小种,而且对Foc STR4 也有抗性[57]。Hwang等[17]报道,通过离体快繁中产生的体细胞无性系变异(Somaclonal variation)获得包括宝岛蕉在内的一系列抗病品系,国内也先后选育出中蕉4 号、农科1 号等抗病品种,但现有抗病品种数量仍十分有限。目前业界普遍寄希望于通过非传统育种方法, 尤其是基因工程获得抗病品种[58]。 广东省农业科学院果树研究所在对国内外香蕉种质资源进行收集、评价的基础上,建立了香蕉杂交育种技术体系。近年来以金手指(AAAB)为母本、 SH-3142(AA)为父本,结合采用胚挽救技术从F1 代单株中选育出中蕉9 号。其中,作为父本的SH3142 来自Pisang Jari Buaya(AA),是经过改良的二倍体类型。病区大田种植的观察结果表明,中蕉9 号田间表现不仅产量高,而且不感香蕉枯萎病[59]。 此外,我们还通过粉蕉 × 二倍体野生长梗蕉杂交选育出粉杂1 号(Musa spp.ABB),该品种不仅丰产性好、果实风味独特,而且田间表现抗香蕉枯萎病[60-61]。
-
6 香蕉抗性种质筛选及抗病性鉴定
-
黄秉智等[62]分别选取发病率90%以上的粉蕉种植园和香牙蕉种植园,对从国际香大蕉种质交换中心(International Musa Germplasm Transit Centre, ITC)引进的32份香蕉种质资源进行抗病性鉴定。 Zuo等[63]选取发病率超过70%的香牙蕉种植园,在确认土壤中病原菌为Foc TR4的基础上,采用完全随机区组设计,对100份不同基因型的香蕉种质资源进行抗病性鉴定。虽然田间病害观察结果仍是评价抗性水平的最终依据,但在田间开展香蕉枯萎病的抗性鉴定需要有大面积发病均匀的地块,且成本较高。目前,香蕉枯萎病的抗病性早期鉴定主要分为苗期人工接种鉴定法和生根试管苗离体接种鉴定法。苗期人工接种鉴定法是在温室大棚中建立盆栽系统或水培系统,接着将Foc接种到香蕉苗根部并记录发病情况,最后依据苗期病情指数划分香蕉品种的抗病性级别[63-64]。生根试管苗离体接种鉴定法是在无菌条件下,将Foc接种到香蕉生根试管苗基部,接种后将培养容器放置在组培室中观察发病情况,然后按照1~6 级的病害评价等级对单株生根试管苗进行病害等级鉴定;采集病害等级数据后, 进行Logistic回归分析,根据发病等级概率的预测结果划分香蕉品种的抗病性级别[65-66]。鉴于目前香蕉枯萎病抗病育种的重点研究领域(离体选择、 遗传转化等)均以香蕉的细胞、组织培养为基础, 采用离体系统进行抗病性早期鉴定能与抗病育种研究更紧密地衔接起来。 左存武等[67]研究表明,香蕉枯萎病高抗品种的根系分泌物对病原菌孢子具有致死作用,中抗品种的根系分泌物对病原菌孢子萌发和菌丝生长均有显著抑制作用,而感病品种的根系分泌物则对病原菌孢子萌发和菌丝生长起促进作用。据此可以进行香蕉种质资源/育种材料的抗病性鉴定。
-
7 香蕉枯萎病的防治
-
7.1 生物防治
-
木霉菌是自然界广泛分布的一类具有较高生防应用价值的真菌,能产生多种酶类物质和次生代谢产物,可促进植物生长、提高土壤肥力、拮抗多种土传病原菌[68]。Yang等[69]从香蕉根部、茎部和根际土壤中分离出具有较高纤维素酶活性的木霉菌,先对木霉菌分离物进行安全性评价,然后将其接种到香蕉幼苗中,接着通过使用负荷挂膜技术测试木霉菌对Foc 4 号生理小种的拮抗作用,结果表明其中4 个株系对香蕉无明显致病性,同时对病原菌有拮抗作用。
-
7.2 轮作
-
Huang等[70]研究发现,韭菜轮作香蕉的种植模式可以起到防控香蕉枯萎病的效果。田间试验第1 年,平均发病率仅为1.73%(对照为52%);盆栽试验中,韭菜处理对香蕉枯萎病的发病抑制率为85.9%、病情抑制率为82%。此外,韭菜叶片的水提取液对Foc 4 号生理小种孢子增殖的抑制率和致死率分别为91.2%和86.97%。Zuo等[71]报道韭菜根系分泌物能抑制Foc TR4 孢子萌发和菌丝生长, 在导致ROS积累和线粒体跨膜电位发生变化的同时,麦角甾醇生物合成基因和自体吞噬相关基因的表达也分别出现下调和上调。
-
8 展望
-
经过10 多年的不懈努力,广东省农业科学院果树研究所已经在香蕉枯萎病的致病机理、抗性机制和抗病品种选育等方面取得系统性的研究成果,并在国际学术领域得到认可。为了消除这一毁灭性病害对香蕉生产的威胁,今后拟在已有研究成果的基础上,进一步调整研究内容、拓宽研究思路、改进实验体系。
-
8.1 调整研究内容
-
既要继续研究抗病品种对Foc TR4 的抗性,也要进一步深入研究Cavendish对Foc 1 号生理小种的抗性[72]。我国台湾地区的GCTCV(Giant Cavendish Tissue Culture Variants)系列抗病品系[17],从抗病表型的分布来看,其对Foc TR4 的抗性属于数量抗性;而Cavendish对Foc 1 号生理小种的抗性则是质量抗性[73]。虽然也有研究报道Foc 1 号生理小种在人工接种条件下侵染Cavendish[74],但在Foc TR4 出现前,Cavendish在田间对Foc 1 号生理小种的抗性保持了近50 年。大部分情况下,其他作物抗病品种的抗性仅能保持不到10 年时间[75]。我们在鉴定其他作物的数量抗性基因时,也发现一些类似R基因的数量抗性基因,这些基因具有不完全抗性的作用,说明数量抗性和质量抗性之间存在一定联系[76]。因此,同时研究抗病品种对Foc TR4 的抗性和Cavendish对Foc 1 号生理小种的抗性,有助于我们更加全面、深入地了解香蕉对枯萎病的抗性机制。
-
8.2 拓宽研究思路
-
抗病品种选育方面,分子标记辅助育种和基因编辑技术是未来香蕉抗枯萎病遗传改良的重要研究方向,特别是基因编辑技术,被视为香蕉对抗Foc TR4 的唯一希望[77]。广东省农业科学院果树研究所率先建立了香蕉CRISPR/Cas9基因编辑技术体系, 实现了对香蕉A基因组八氢番茄红素脱氢酶(PDS) 基因的定点敲除[78]。随着该项技术的不断改进[79], 近年内有望通过基因编辑技术获得香蕉枯萎病抗病品种。由于病原菌在不断进化,从长远角度考虑, 通过将抗性基因导入香蕉获得抗病品种的防治策略仍有潜在风险。为了获得更加持久、稳定的抗病性, 还应进一步将寄主植物诱导的基因沉默技术(Hostinduced gene silencing,HIGS)应用于香蕉枯萎病抗病育种[80]。根据致病机理研究取得的结果,将Foc TR4 麦角甾醇生物合成途径关键基因FoERG6 和FoERG11 作为靶标基因,构建RNA干扰(RNAi) 载体并转化Cavendish,成功获得表达上述两个基因双链RNA(dsRNA)的转基因植株。抗病性评价结果表明,表达FoERG6 和FoERG11 dsRNA不仅明显抑制了Foc TR4 的侵染过程,而且降低了发病率。
-
8.3 改进实验体系
-
目前,用于研究香蕉-Foc互作的水培系统均是开放的水培系统[81-83]。鉴于香蕉根系具有好气性,已报道的水培系统往往包含一个供氧装置[81], 或者通过营养液的循环流动改善水培系统的通气状况[83]。最近,我们建立了香蕉试管苗的离体水培系统[84],该系统具有以下特点:通过在培养容器中搭建简易的滤纸培养支架,在无需供氧装置的情况下解决了香蕉根系对氧气需求量大的问题;在不更换新鲜营养液的情况下,生根试管苗在离体培养的条件下能继续生长至少8 周;是一个完全封闭的系统,能保证后续实验的准确性和重复性。近年来, 应用离体水培系统进行植物-病原菌互作的研究仅在拟南芥[85]中有报道。
-
(责任编辑 张辉玲)
-
易干军,博士,二级研究员,博士生导师,现任广东省农业科学院副院长、农业农村部南亚热带果树生物学与遗传资源利用重点实验室主任、 国家良种香蕉联合攻关首席科学家、 国家香蕉产业技术体系功能研究室主任、岗位科学家。一直从事果树遗传改良与新品种选育工作,先后主持承担国家自然科学-广东联合基金重点项目、科技部国际合作项目、农业农村部“948”重点项目等国家、省(部)级科研项目36 项,获省部级科学技术奖励3 项,其中神农中华农业科技奖一等奖1 项、华耐园艺奖一等奖1 项;选育香蕉新品种8 个;获授权发明专利6 项;发表科技论文50 余篇,制定技术标准3 部;先后入选全国农业科研杰出人才、 农业农村部果树指导专家委员会委员、国务院政府特殊津贴专家,获“中国农学会青年科技奖”等荣誉称号;带领的“香蕉遗传改良创新团队”入选农业农村部“全国农业科研杰出人才创新团队”;担任FAO国际热带水果网络组织(TFnet)副主席,亚太香大蕉网中国代表,华南农业大学、华中农业大学、湖南农业大学、江西农业大学、南非斯坦陵布什大学兼职教授,《园艺学报》《果树学报》《广东农业科学》等期刊编委等职务。
-
参考文献
-
[1]
SIMMONDS N W,SHEPHERD K.The taxonomy and origins of the cultivated bananas[J].Botanical Journal of the Linnean Society,2010,359:302-312.DOI:10.1111/j.1095-8339.1955.tb00015.x.[百度学术] -
[2]
李锡文.云南芭蕉科植物[J].植物分类学报,1978,16(3):54-64.[百度学术]LI X W.The Musaceae of Yunnan[J].Journal of Systemics and Evolution,1978,16(3):54-64.[百度学术] -
[3]
刘伟良,陈友,王静毅,武耀廷.云南热带地区野生香蕉资源考察及分布现状分析[J].热带农业科学,2007,27(3):31-34.DOI:10.3969/j.issn.1009-2196.2007.03.009.[百度学术]LIU W L,CHEN Y,WANG J Y,WU Y T.Survey and analysis of the current status of wild banana resources distributed in tropical area of Yunnan[J].Chinese Journal of Tropical Agriculture,2007,27(3):31-34.DOI:10.3969/j.issn.1009-2196.2007.03.009.[百度学术] -
[4]
曾惜冰,李丰年,许林兵,杨护,林志雄,黄秉智.广东省野生蕉的初步调查研究[J].园艺学报,1989,16(2):95-100.[百度学术]ZENG X B,LI F N,XU L B,YANG H,LIN Z X,HUANG B Z.A preliminary investigation on wild bananas in Guangdong Province[J].Acta Horticulturae Sinica,1989,16(2):95-100.[百度学术] -
[5]
刘伟良,王静毅,黎明,陈友,武耀廷.海南岛野生香蕉居群分布与居群内植物组成[J].中国农学通报,2007,23(8):476-481.DOI:10.3969/j.issn.1000-6850.2007.08.104.[百度学术]LIU W L,WANG J Y,LI M,CHEN Y,WU Y T.Distribution of wild banana(Musa itinerans)population and species composition within the population in Hainan Island[J].Chinese Agricultural Science Bulletin,2 0 0 7,23(8):476-481.DOI:10.39 69/j.issn.1000-6850.2007.08.104.[百度学术] -
[6]
赖钟雄,陈源,林玉玲,赵巧阳,陈义挺,张知通.三明野生蕉基本生物学特性调查[J].亚热带农业研究,2006,2(4):241-244.DOI:10.3969/j.issn.1673-0925.2006.04.001.[百度学术]LAI Z X,CHEN Y,LIN Y L,ZHAO Q Y,CHEN Y T,ZHANG Z T.Investigation of basic biological characteristics of wild banana(Musa spp.‘AB’Group)in Sanming City[J].Subtropical Agriculture Research,2006,2(4):241-244.DOI:10.3969/j.issn.1673-0925.2006.04.001.[百度学术] -
[7]
赖钟雄,陈源,林玉玲,赵巧阳,陈义挺.福州野生蕉(Musa spp.,AA Group)的发现及其分类学地位的初步确定[J].亚热带农业研究,2007,3(1):1-5.DOI:10.3969/j.issn.1673-0925.2007.01.001.[百度学术]LAI Z X,CHEN Y,LIN Y L,ZHAO Q Y,CHEN Y T.Discovery and taxonomy of wild banana(Musa spp.‘AA’ Group)in Fuzhou [J].Subtropical Agriculture Research,2007,3(1):1-5.DOI:10.3969/j.issn.1673-0925.2007.01.001.[百度学术] -
[8]
秦献泉,彭宏祥,尧金燕,龙兴,曹辉庆,何新华.广西博白野生蕉植物学性状观察及分类学地位[J].亚热带植物科学,2008,37(4):9-11.[百度学术]QIN X Q,PENG H X,YAO J Y,LONG X,CAO H Q,HE X H.Botanical characters and classification status of wild banana in Bobai County,Guangxi[J].Subtropical Plant Science,2008,37(4):9-11.[百度学术] -
[9]
龙兴,秦献泉,方仁,邓彪,安振宇,黄伟雄,尧金燕.广西野生蕉种质资源调查与鉴定[J].西南农业学报,2017,30(6):1284-1293.DOI:10.16213/j.cnki.scjas.2017.6.008.[百度学术]LONG X,QIN X Q,FANG R,DENG B,AN Z Y,HUANG W X,YAO J Y.Investigation and identification of wild Musa germplasm resources in Guangxi Province[J].Southwest China Journal of Agricultural Sciences,2017,30(6):1284-1293.DOI:10.16213/j.cnki.scjas.2017.6.008.[百度学术] -
[10]
WU Y L,YI G J,HUANG B Z,WEI Y R,LI C Y,HU C H,HUANG Y H.The advancement of research on banana germplasm resources in China[J].Acta Horticulturae,2013,975:147-152.DOI:10.17660/ActaHortic.2013.975.15.[百度学术] -
[11]
BUTLER D.Fungus threatens top banana[J].Nature,2013,504:195.DOI:10.1038/504195a.[百度学术] -
[12]
PLOETZ R C.Fusarium wilt of banana[J].Phytopathology,2015,105(12):1512.DOI:10.1094/PHYTO-04-15-0101-RVW.[百度学术] -
[13]
BANCROFT J.Report of the board appointed to enquire into the cause of disease affecting livestock and plants[J].Votes and Proceedings,1876,3:1011-1038.[百度学术] -
[14]
PLOETZ R C.Panama disease:return of the first banana menace[J].International Journal of Pest Management,1994,40:326-336.DOI:10.1080/09670879409371908.[百度学术] -
[15]
SHIVAS R G,WOOD P M,DARCEY M W,PEGG K G.First record of Fusarium oxysporum f.sp.cubense on Cavendish bananas in Western Australia[J].Australasian Plant Pathology,1995,24:38-43.DOI:10.1071/APP9950038.[百度学术] -
[16]
WAITE B H.Wilt of Heliconia spp.caused by Fusarium oxysporum f.sp.cubense race 3[J].Tropical Agriculture Trinidad,1963,40:299-305.[百度学术] -
[17]
HWANG S C,KO W H.Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan[J].Plant Disease,2004,88:580-588.DOI:10.1094/PDIS.2004.88.6.580.[百度学术] -
[18]
SU H J,HWANG S C,KO W H.Fusarial wilt of Cavendish bananas in Taiwan[J].Plant Disease,1986,70:814-818.DOI:10.1094/PD70-814.[百度学术] -
[19]
PLOETZ R C.Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f.sp.cubense [J].Phytopathology,2006,96:653-656.DOI:10.1094/PHYTO-96-0653.[百度学术] -
[20]
ZHENG S J,GARCIA-BASTIDAS F A,LI X,ZENG L,BAIT,XU S,YIN K,LI H,FU G,YU Y,YANG L,NGUYEN H C,DOUANGBOUPHA B,KHAING A A,DRENTH A,SEIDL M F,MEIJER H J G,KEMA G H J.New geographical insights of the latest expansion of Fusarium oxysporum f.sp.cubense tropical race 4 into the Greater Mekong Subregion[J].Frontiers in Plant Science,2018,9:457.DOI:10.3389/fpls.2018.00457.[百度学术] -
[21]
FOURIE G,STEENKAMP E T,GORDON T R,VILJOEN A.Evolutionary relationships among the Fusarium oxysporum f.sp.cubense vegetative compatibility groups[J].Applied Environmental Microbiology,2009,75:4770-4781.DOI:10.1128/AEM.00370-09.[百度学术] -
[22]
MOSTERT D,MOLINA A B,DANIELLS J,FOURIE G,HERMANTO C,CHAO C P,FABREGAR E,SINOHIN V G,MASDEK N,THANGAVELU R,LI C Y,YI G J,MOSTERT L,VILJOEN A.The distribution and host range of the banana Fusarium wilt fungus,Fusarium oxysporum f.sp.cubense in Asia[J].PLOS ONE,2017,12:e0181630.DOI:10.1371/journal.pone.0181630.[百度学术] -
[23]
曾惜冰,王碧青,韩路,黄秉智,杨护.香蕉种质资源抗枯萎病的鉴定[J].中国果树,1996(2):28-29.DOI:10.16626/j.cnki.issn1000-8047.1996.02.018.[百度学术]ZENG X B,WANG B Q,HAN L,HUANG B Z,YANG H.Screening of Musa species for resistance to Fusarium wilt[J].China Fruits,1996(2):28-29.DOI:10.16626/j.cnki.issn1000-8047.1996.02.018.[百度学术] -
[24]
李敏慧,习平根,姜子德,戚佩坤.广东香蕉枯萎病菌生理小种的鉴定[J].华南农业大学学报,2007,28(2):38-41.DOI:10.7671/j.issn.1001-411X.2007.02.010.[百度学术]LI M H,XI P G,JIANG Z D,QI P K.Race identification of Fusarium oxysporum f.sp.cubense,the causal agent of banana Fusarium wilt in Guangdong Province[J].Journal of South China Agricultural University,2007,28(2):38-41.DOI:10.7671/j.issn.1001-411X.2007.02.010.[百度学术] -
[25]
卓国豪,陈绍平,郑康炎,蔡丽丽,钟丽波.香蕉枯萎病发生原因及控制对策[J].广东农业科学,2005(1):56-57.DOI:10.16768/j.issn.1004-874X.2005.01.02.[百度学术]ZHUO G H,CHEN S P,ZHENG K Y,CAI L L,ZHONG L B.Occurrence and management of Fusarium wilt of banana[J].Guangdong Agricultural Sciences,2005(1):56-57.DOI:10.16768/j.issn.1004-874X.2005.01.02.[百度学术] -
[26]
林时迟,张绍升,周乐峰,黄月英,胡方平.福建省香蕉枯萎病鉴定 [J].福建农业大学学报,2000,29(4):465-469.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2000.04.012.[百度学术]LIN S C,ZHANG S S,ZHOU L F,HUANG Y Y,HU F P.Identification of banana vascular wilt in Fujian[J].Journal of Fujian Agricultural University,2000,29(4):465-469.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2000.04.012.[百度学术] -
[27]
叶明珍,张绍升.福建省香蕉枯萎病菌硝酸盐营养突变体的营养体亲和性测定[J].植物病理学报,2006,36(4):375-377.DOI:10.3321/j.issn:0412-0914.2006.04.017.[百度学术]YE M Z,ZHANG S S.Nitrate nonutilizing mutants of Fusarium oxysporum f.sp.cubense and use in vegetative compatibility tests in Fujian,China[J].Acta Phytopathologica Sinica,2006,36(4):375-377.DOI:10.3321/j.issn:0412-0914.2006.04.017.[百度学术] -
[28]
漆艳香,谢艺贤,张欣,蒲金基,张辉强.海南省香蕉枯萎病病原菌的鉴定[J].生物技术通报,2006(S):316-319.DOI:10.3969/j.issn.1002-5464.2006.z1.069.[百度学术]QI Y X,X I E Y X,ZH ANG X,PU J J,ZH ANG H Q.T he identification of pathogen causing banana Fusarium wilt in Hainan [J].Biotechnology Bulletin,2006(S):316-319.DOI:10.3969/j.issn.1002-5464.2006.z1.069.[百度学术] -
[29]
莫贱友,郭堂勋,李焜华.广西蕉类枯萎病发生及为害情况调查[J].中国南方果树,2006,35(3):53-54.DOI:10.13938/j.issn.1007-1431.2006.03.029.[百度学术]MO J Y,GUO T X,LI K H.Occurrence and investigation of Fusarium wilt of banana in Guangxi[J].South China Fruits,2006,35(3):53-54.DOI:10.13938/j.issn.1007-1431.2006.03.029.[百度学术] -
[30]
莫贱友,郭堂勋,李焜华.广西香蕉枯萎病的发生与病原鉴定[J].广西农业科学,2008,39(4):481-484.DOI:10.3969/j.issn.2095-1191.2008.04.017.[百度学术]MO J Y,GUO T X,LI K H.Occurrence and identification of banana vascular wilt in Guangxi[J].Guangxi Agricultural Sciences,2008,39(4):481-484.DOI:10.3969/j.issn.2095-1191.2008.04.017.[百度学术] -
[31]
莫贱友,秦碧霞,郭堂勋,黄穗萍,李其利,李焜华.广西香蕉枯萎病病原菌4号生理小种的分子检测与鉴定[J].南方农业学报,2 012,43(9):1312-1315.D OI:10.39 6 9/j:issn.2095-1191.2012.09.1312.[百度学术]MO J Y,QIN B X,GUO T X,HUANG S P,LI Q L,LI K H.Detection and identification of banana Fusarium wilt pathogen(FOC 4)in Guangxi[J].Journal of Southern Agriculture,2012,43(9):1312-1315.DOI:10.3969/j:issn.2095-1191.2012.09.1312.[百度学术] -
[32]
曾莉,郭志祥,番华彩,李洪祥,唐志敏,李雁,杨佩文,白亭亭.云南香蕉枯萎病及防治研究进展[J].热带农业科技,2016,39(4):19-22.DOI:10.16005/j.cnki.tast.2016.04.006.[百度学术]ZENG L,GUO Z Q,FAN H C,LI H X,TANG Z M,LI Y,YANG P W,BAI T T.Advance in research of banana Panama disease and its control in Yunnan Province[J].Tropical Agricultural Science & Technology,2016,39(4):19-22.DOI:10.16005/j.cnki.tast.2016.04.006.[百度学术] -
[33]
李华平,李云锋,聂燕芳.香蕉枯萎病的发生及防控研究现状 [J].华南农业大学学报,2019,40(5):128-136.DOI:10.7671/j.issn.1001-411X.201905062.[百度学术]LI H P,LI Y F,NIE Y F.Research status of occurrence and control of Fusarium wilt of banana[J].Journal of South China Agricultural University,2019,40(5):128-136.DOI:10.7671/j.issn.1001-411X.201905062.[百度学术] -
[34]
LI C Y,MOSTERT G,ZUO C W,BEUKES I,YANG Q S,SHENG O,KUANG R B,WEI Y R,HU C H,ROSE L,KARANGWA P,YANG J,DENG G M,LIU S W,GAO J,VILJOEN A,YI G J.Diversity and distribution of the banana wilt pathogen Fusarium oxysporum f.sp.cubense in China[J].Fungal Genomics & Biology,2013,3:2.DOI:10.4172/2165-8056.1000111.[百度学术] -
[35]
LI C Y,CHEN S,ZUO C W,SUN Q M,YE Q,YI G J,HUANG B Z.The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f.sp.cubense race 4[J].European Journal of Plant Pathology,2011,131(2):327-340.DOI:10.1007/s10658-011-9811-5.[百度学术] -
[36]
邝瑞彬,李春雨,杨静,魏岳荣,杨乔松,胡春华,盛鸥,易干军.抗感枯萎病香蕉的细胞结构抗性研究[J].分子植物育种,2013,11(2):193-198.DOI:10.3969/mpb.011.000193.[百度学术]KUANG R B,LI C Y,YANG J,WEI Y R,YANG Q S,HU C H,SHENG O,YI G J.Cell structure alteration of banana cultivars with different resistance to Fusarium oxysporum f.sp.cubense[J].Molecular Plant Breeding,2013,11(2):193-198.DOI:10.3969/mpb.011.000193.[百度学术] -
[37]
LEE Y H,DEAN R A.Camp regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea[J].Plant Cell,1993,5:693-700.DOI:10.1105/tpc.5.6.693.[百度学术] -
[38]
MCCUDDEN C R,HAINS M D,KIMPLE R J,SIDEROVSKI D P,WILLARD F S.G-protein signaling:back to the future[J].Cellular and Molecular Life Sciences,2005,62:551-577.DOI:10.1007/s00018-004-4462-3.[百度学术] -
[39]
李春雨,陈石,孙清明,邝瑞彬,左存武,郑加协,周红玲,易干军.香蕉枯萎病菌fga1基因克隆及其多样性研究[J].分子植物育种,2011,9(6):709-715.DOI:10.3969/mpb.009.000709.[百度学术]LI C Y,CHEN S,SUN Q M,KUANG R B,ZUO C W,ZHENG J X,ZHOU H L,YI G J.Cloning and diversity of fga1 from Fusarium oxysporum f.sp.cubense[J].Molecular Plant Breeding,2011,9(6):709-715.DOI:10.3969/mpb.009.000709.[百度学术] -
[40]
CHRISTENSEN S A,KOLOMIETS M V.The lipid language of plantfungal interactions[J].Fungal Genetics and Biology,2011,48(1):4-14.DOI:10.1016/j.fgb.2010.05.005.[百度学术] -
[41]
DENG G M,YANG Q S,HE W D,LI C Y,YANG J,ZUO C W,GAO J,SHENG O,LU S Y,ZHANG S,YI G J.Proteomic analysis of conidia germination in Fusarium oxysporum f.sp.cubense,tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana[J].Applied Microbiology & Biotechnology,2015,99(17):7189-7207.DOI:10.1007/s00253-015-6768-x.[百度学术] -
[42]
PAZZAGLI L,SEIDL-SEIBOTH V,BARSOTTINI M,VARGAS W A,SCALA A,MUKHERJEE P K.Cerato-platanins:Elicitors and effectors[J].Plant Science,2014,228(9):79-87.DOI:10.1016/j.plantsci.2014.02.009.[百度学术] -
[43]
LIU S W,WU B,YANG J,BI F C,DONG T,YANG Q S,HU C H,XIANG D D,CHEN H R,HUANG H Q,SHAO C G,CHEN Y X,YI G J,LI C Y,GUO X W.A cerato-platanin family protein FocCP1 is essential for the penetration and virulence of Fusarium oxysporum f.sp.cubense tropical race 4[J].International Journal of Molecular Sciences,2019,20:3785.DOI:10.3390/ijms20153785.[百度学术] -
[44]
LI C Y,ZUO C W,DENG G M,KUANG R B,YANG Q S,HU C H,SHENG O,ZHANG S,MA L J,WEI Y R,YANG J,LIU S W,BISWAS M K,VILJOEN A,YI G J.Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f.sp.cubense[J].PLOS ONE,2013,8:e70226.DOI:10.1371/journal.pone.0070226.[百度学术] -
[45]
LIU S W,LI J,ZHANG Y,LIU N,VILJOEN A,MOSTERT D,ZUO C W,HU C H,BI F C,GAO H J,SHENG O,DENG G M,YANG Q S,DONG T,DOU T X,YI G J,MA L J,LI C Y.Fusaric acid instigates the invasion of banana by Fusarium oxysporum f.sp.cubense TR4[J].New Phytologist,2020,225:913-929.DOI:10.1111/nph.16193.[百度学术] -
[46]
JONES J D G,DANGL J L.The plant immune system[J].Nature,2006,444:323-329.DOI:10.1038/nature05286.[百度学术] -
[47]
LI C Y,DENG G M,YANG J,VILJOEN A,JIN Y,KUANG R B,ZUO C W,LV Z C,YANG Q S,SHENG O,WEI Y R,HU C H,DONG T,YI G J.Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f.sp.cubense tropical race 4[J].BMC Genomics,2012,13(1):374.DOI:10.1186/1471-2164-13-374.[百度学术] -
[48]
MACKEY D,HOLT B F,WIIG A,DANGL J L.RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis[J].Cell,2002,108:743-754.DOI:10.1016/S0092-8674(02)00661-X.[百度学术] -
[49]
YU X,FENG B,HE P,SHAN L.From chaos to harmony:responses and signaling upon microbial pattern recognition[J].Annual Review of Phytopathology,2017,55:109-137.DOI:10.1146/annurev-phyto-080516-035649.[百度学术] -
[50]
THOMMA B P,NURNBERGER T,JOOSTEN M H.Of PAMPs and effectors:the blurred PTI-ETI dichotomy[J].Plant Cell,2011,23:4-15.DOI:10.1105/tpc.110.082602.[百度学术] -
[51]
LAMBETH J D.NOX enzymes and the biology of reactive oxygen [J].Nature Reviews Immunology,2004,4:181-189.DOI:10.1038/nri1312.[百度学术] -
[52]
LORITO M,WOO S L,FERNADEZ I G,COLUCCI G,HARMAN G E,PINTOR-TORO J A,FILLIPONE E,MUCCIFORA S,LAWRENCE C B,ZOINA A,TUZUN S,SCALA F.Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens[J].Proceedings of the National Academy of Sciences,1998,95:7860-7865.[百度学术] -
[53]
HU C H,WEI Y R,HUANG Y H,YI G J.An efficient protocol for the production of chit42 transgenic Furenzhi banana(Musa spp.AA group)resistant to Fusarium oxysporum[J].In Vitro Cellular and Developmental Biology-Plant,2013,49(5):584-592.DOI:10.1007/s11627-013-9525-9.[百度学术] -
[54]
DURRANT W E,DONG X.Systemic acquired resistance[J].Annual Review of Phytopathology,2004,42:185-209.DOI:10.1146/annurev.phyto.42.040803.140421.[百度学术] -
[55]
WU Y L,YI G J,PENG X X,HUANG B Z,LIU E E,ZHANG J J.Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f.sp.cubense[J].Journal of Plant Physiology,2013,170:1039-1046.DOI:10.1016/j.jplph.2013.02.011.[百度学术] -
[56]
ROWE P,ROSALES F.Diploid breeding at FHIA and the development of Goldfinger(FHIA-01)[J].Infomusa,1993,2:19-21.[百度学术] -
[57]
SMITH M K,LANGDON P W,PEGG K G,DANIELLS J W.Growth,yield and Fusarium wilt resistance of six FHIA tetraploid bananas(Musa spp.)grown in the Australian subtropics[J].Scientia Horticulturae,2014,170:176-181.DOI:10.1016/j.scienta.2014.02.029.[百度学术] -
[58]
DA L E J,JA M E S A,PAU L J Y,K H A N NA H,SM I T H M,PERAZA-ECHEVERRIA S,GARCIA-BASTIDAS F,KEMA G,WATERHOUSE P,MENGERSEN K,HARDING R.Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4[J].Nature Communications,2017,8:1496.DOI:10.1038/s41467-017-01670-6.[百度学术] -
[59]
田青兰,刘洁云,吴艳艳,黄伟华,黄永才,牟海飞,吴代东,张英俊,黄平明.‘中蕉9号’在不同移栽期下的产量及品质比较[J].热带作物学报,2020,41(4):640-648.[百度学术]TIAN Q L,LIU J Y,WU Y Y,HUANG W H,HUANG Y C,MOU H F,WU D D.ZHANG Y J,HUANG P P.Comparison of yield formation and quality of ‘Zhongjiao No.9’ under different transplanting dates [J].Chinese Journal of Tropical Crops,2020,41(4):640-648.[百度学术] -
[60]
柯月华.抗枯萎病香蕉品种‘粉杂1号’的特性及栽培技术[J].中国果树,2017(5):83-86.DOI:10.16626/j.cnki.issn1000-8047.2017.05.023.[百度学术]KE Y H.Agronomic traits and cultivation technologies of Fusarium wilt-resistant variety‘Fenza No.1’(Musa spp.ABB)[J].China Fruits,2017(5):83-86.DOI:10.16626/j.cnki.issn1000-8047.2017.05.023.[百度学术] -
[61]
李朝生,霍秀娟,韦绍龙,韦弟,伟华芳,黄素梅.5 份香蕉种质对枯萎病的抗性评价[J].南方农业学报,2012,43(4):449-453.DOI:10.3969/j:issn.2095-1191.2012.04.449.[百度学术]LI C S,HUO X J,WEI S L,WEI D,WEI H F,HUANG S M.Evaluation of 5 banana varieties for resistance to Fusarium wilt(Fusarium oxysporum f.sp.cubense)[J].Jour nal of Southern Agriculture,2012,43(4):449-453.DOI:10.3969/j:issn.2095-1191.2012.04.449.[百度学术] -
[62]
黄秉智,许林兵,杨护,唐小浪,魏岳荣,邱继水,李贯球.香蕉种质资源枯萎病抗性田间评价初报[J].广东农业科学,2005(6):9-10.DOI:10.16768/j.issn.1004-874X.2005.06.002.[百度学术]HUANG B Z,XU L B,YANG H,TANG X L,WEI Y R,QIU J S,LI G Q.Preliminary results of field evaluation of banana germplasm resistant to Fusarium wilt disease[J].Guangdong Agricultural Sciences,2005(6):9-10.DOI:10.16768/j.issn.1004-874X.2005.06.002.[百度学术] -
[63]
ZUO C W,DENG G M,LI B,HUO H Q,LI C Y,HU C H,KUANG R B,YANG Q S,DONG T,SHENG O,YI G J.Germplasm screening of Musa spp.for resistance to Fusarium oxysporum f.sp.cubense tropical race 4(Foc TR4)[J].European Journal of Plant Pathology,2018,151:723-734.DOI:10.1007/s10658-017-1406-3.[百度学术] -
[64]
左存武,李斌,李春雨,魏岳荣,胡春华,邓贵明,邝瑞彬,杨乔松,易干军.香蕉对尖孢镰刀菌热带4号小种的抗性评价方法的建立 [J].园艺学报,2016,43(5):876-884.DOI:10.16420/j.issn.0513-353x.2015-0781.[百度学术]ZUO C W,LI B,LI C Y,WEI Y R,HU C H,DENG G M,KUANG R B,YANG Q S,YI G J.Establishment of resistance evaluation system of banana to Fusarium oxysporum f.sp.cubense Tropical Race 4[J].Acta Horticulturae Sinica,2016,43(5):876-884.DOI:10.16420/j.issn.0513-353x.2015-0781.[百度学术] -
[65]
WU Y L,YI G J,PENG X X.Rapid screening of Musa species for resistance to Fusarium wilt in an in vitro bioassay[J].European Journal of Plant Pathology,2010,128:409-415.DOI:10.1007/s10658-010-9669-y.[百度学术] -
[66]
吴元立,黄秉智,张智胜,杨兴玉.香蕉枯萎病抗性离体接种鉴定方法的优化[J].园艺学报,2020,47(8):1577-1584.DOI:10.16420/j.issn.0513-353x.2020-0214.[百度学术]WU Y L,HUANG B Z,ZHANG Z S,YANG X Y.Modification of in vitro bioassay for screening Musa species against Fusarium oxysporum f.sp.cubense[J].Acta Horticulturae Sinica,2020,47(8):1577-1584.DOI:10.16420/j.issn.0513-353x.2020-0214.[百度学术] -
[67]
左存武,孙清明,黄秉智,李春雨,易干军.利用根系分泌物与绿色荧光蛋白标记的病原菌互作关系鉴定香蕉对枯萎病的抗性 [J].园艺学报,2010,37(5):713-720.DOI:10.16420/j.issn.0513-353x.2010.05.008.[百度学术]ZUO C W,SUN Q M,HUANG B Z,LI C Y,YI G J.Screening method for resistance to Fusarium wilt of banana basing on green fluorescent protein tagged pathogen and root exudates[J].Acta Horticulturae Sinica,2010,37(5):713-720.DOI:10.16420/j.issn.0513-353x.2010.05.008.[百度学术] -
[68]
SUNDARAMOORTHY S,BALABASKAR P.Biocontrol efficacy of Trichoderma spp.against wilt of tomato caused by Fusarium oxysporum f.sp.lycopersici[J].Journal of Applied Biology and Biotechnology,2013,1(3):36-40.DOI:10.7324/JABB.2013.1306.[百度学术] -
[69]
YANG J,LI B,LIU S W,BISWAS M K,LIU S,WEI Y R,ZUO C W,DENG G M,KUANG R B,HU C H,YI G J,LI C Y.Fermentation of Foc TR4-infected bananas and Trichoderma spp.[J].Genetics and Molecular Research,2016,15(4):gmr15048494.DOI:10.4238/gmr15048494.[百度学术] -
[70]
HUANG Y H,WANG R C,LI C H,ZUO C W,WEI Y R,ZHANG L,YI G J.Control of Fusarium wilt in banana with Chinese leek [J].European Journal of Plant Pathology,2012,134:87-95.DOI:10.1007/s10658-012-0024-3.[百度学术] -
[71]
ZUO C W,LI C Y,LI B,WEI Y R,HU C H,YANG Q S,YANG J,SHENG O,KUANG R B,DENG G M,BISWAS M K,YI G J.The toxic mechanism and bioactive components of Chinese leek root exudates acting against Fusarium oxysporum f.sp.cubense tropical race 4 [J].European Journal of Plant Pathology,2015,143:447-460.DOI:10.1007/s10658-015-0697-5.[百度学术] -
[72]
LI C Q,SHAO J F,WANG Y J,LI W B,GUO D J,YAN B,XIA Y J.Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f.sp.cubense[J].BMC Genomics,2013,14:851.DOI:10.1186/1471-2164-14-851.[百度学术] -
[73]
DITA M,BARQUERO M,HECK D,MIZUBUTI E S G,STAVER C P.Fusarium wilt of banana:current knowledge on epidemiology and research needs toward sustainable disease management[J].Frontiers in Plant Science,2018,9:1468.DOI:10.3389/fpls.2018.01468.[百度学术] -
[74]
BRAKE V,PEGG K,IRWIN J,CHASELING J.The influence of temperature,inoculums level and race of Fusarium oxgsporum f.sp.cubense on the disease reaction of banana cv.Cavendish[J].Australian Journal of Agricultural Research,1995,46(3):673-685.DOI:10.1071/ar9950673.[百度学术] -
[75]
MCDONALD B A,LINDE C.Pathogen population genetics,evolutionary potential,and durable resistance[J].Annual Review of Phytopathology,2002,40:349-379.DOI:10.1146/annurev.phyto.40.120501.101443.[百度学术] -
[76]
POLAND J A,BALINTKURTI P J,PRATT R C,NELSON R J.Shades of gray:the world of quantitative disease resistance [J].Trends in Plant Science,2009,14:21-29.DOI:10.1016/j.tplants.2008.10.006.[百度学术] -
[77]
MAXMEN A.CRISPR might be the banana's only hope against a deadly fungus[J].Nature,2019,574:15.DOI:10.1038/d41586-019-02770-7.[百度学术] -
[78]
胡春华,邓贵明,孙晓玄,左存武,李春雨,邝瑞彬,杨乔松,易干军.香蕉 CRISPR/Cas9 基因编辑技术体系的建立[J].中国农业科学,2017,50(7):1294-1301.DOI:10.3864/j.issn.0578-1752.2017.07.012.[百度学术]HU C H,DENG G M,SUN X X,ZUO C W,LI C Y,KUANG R B,YANG Q S,YI G J.Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana[J].Scientia Agricultura Sinica,2017,50(7):1294-1301.DOI:10.3864/j.issn.0578-1752.2017.07.012.[百度学术] -
[79]
WU S P,ZHU H C,LIU J X,YANG Q S,SHAO X H,BI F C,HU C H,HUO H Q,CHEN K L,YI G J.Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana[J].BMC Plant Biology,2020,20:425.DOI:10.21203/rs.3.rs-32229/v1.[百度学术] -
[80]
DOU T X,SHAO X H,HU C H,LIU S W,SHENG O,BI F C,DENG G M,DING L J,LI C Y,DONG T,GAO H J,HE W D,PENG X X,ZHANG S,HUO H Q,YANG Q S,YI G J.Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana[J].Plant Biotechnology Journal,2020,18:11-13.DOI:10.1111/pbi.13204.[百度学术] -
[81]
DE ASCENSAO A R D C F,DUBERY I A.Panama disease:cell wall reinforcement in banana roots in response to elicitors from Fusariumoxysporum f.sp.cubense race four[J].Phytopathology,2000,90:1173-1180.DOI:10.1094/PHYTO.2000.90.10.1173.[百度学术] -
[82]
VAN DEN BERG N,BERGER D K,HEIN I,BIRCH P R J,WINGFIELD M J,VILJOEN A.Tolerance in banana to Fusarium wilt is associated with early upregulation of cell wall-strengthening genes in the roots[J].Molecular Plant Pathology,2007,8:333-341.DOI:10.1111/j.1364-3703.2007.00389.x.[百度学术] -
[83]
MA L,JIANG S,LIN G,CAI J,YE X,CHEN H,LI M,LI H,TAKÁC T,ŠAMAJ J,XU C.Wound-induced pectin methylesterases enhance banana(Musa spp.AAA)susceptibility to Fusarium oxysporum f.sp.cubense[J].Journal of Experimental Botany,2013,64:2219-2229.DOI:10.1093/jxb/ert088.[百度学术] -
[84]
吴元立,黄秉智,彭新湘,张建军,杨兴玉.一种香蕉根系离体水培系统及培养方法:ZL 201711048148.2[P].2020-06-09.[百度学术]WU Y L,HUANG B Z,PENG X X,ZHANG J J,YANG X Y.Banana root system in-vitro water culture system and method:ZL 201711048148.2[P].2020-06-09.[百度学术] -
[85]
ALATORRE-COBOS F,CALDERÓN-VÁZQUEZ C,IBARRALACLETTE E,YONG-VILLAOBOS L,PÉREZ-TORRES C A,OROPEZA-ABURTO A,MÉNDEZ-BRAVO A,GONZÁLEZMORALES S I,GUTIÉRREZ-ALANÍS D,CHACÓN-LÓPEZ A,PEÑA-OCAÑA B A,HERRERA-EETRELLA L.An improved,low-cost,hydroponic system for growing Arabidopsis and other plant species under aseptic conditions[J].BMC Plant Biology,2014,14:69.DOI:10.1186/1471-2229-14-69.[百度学术]
-
摘要
由土壤真菌 Fusarium oxysporum f. sp. cubense(Foc)引起的香蕉镰刀菌枯萎病是全世界范围内严重威胁香蕉生产的毁灭性病害。目前已发现 Foc 的 4 个生理小种。20 世纪 70 年代,Foc 1 号生理小种造成我国华南地区的龙牙蕉和粉蕉种植园大面积发病;90 年代中后期,在广东省的香牙蕉种植园发现 Foc 4 号生理小种, 并且迅速向其他香蕉产区蔓延。目前,国内各香蕉主产区均有报道发生 Foc 4 号生理小种引起的香蕉枯萎病,该病已成为制约我国香蕉生产的最主要因素。对香蕉枯萎病菌侵染过程以及香蕉枯萎病致病机理、抗性机制、抗病品种选育、抗性种质筛选及抗病性鉴定、防治等多个领域取得的研究进展进行了概述,并对今后研究方向进行了展望,主要包括:(1)在继续研究已有抗病品种对 Foc TR4 抗性的同时,要进一步深入研究 Cavendish 对 Foc 1 号生理小种的抗性;(2)利用已经建立的香蕉 CRISPR/Cas9 基因编辑技术体系,获得香蕉枯萎病抗病品种, 并进一步应用寄主植物诱导的基因沉默技术(HIGS)获得更加持久稳定的抗病性;(3)将已经建立的香蕉试管苗离体水培系统应用于香蕉-Foc 互作研究。
Abstract
Global banana production is severely threatened by Fusarium wilt, which is caused by soil borne fungus Fusarium oxysporum f. sp. cubense(Foc). Currently, four races of Foc have been recognized based on their pathogenicity to different host cultivars. In the 1970s, Longyajiao(Musa AAB Silk)and Fenjiao(Musa ABB Pisang Awak)plantations in South China were infected by Foc race 1. In the middle and late 1990s, Foc race 4 was found in Guangdong’s Xiangyajiao (Musa AAA Cavendish subgroup)plantations and spread to other banana production areas. At present, Fusarium wilt disease caused by Foc race 4 was reported in most banana production areas of China and it has become the majorconstraint of banana production in China. The research progress in infection process, pathogenicity mechanisms, resistance mechanisms, breeding and selection of disease-resistant variety, screening of resistant germplasm, resistance identification and control of Fusarium wilt are reviewed. In the next few years, the research directions mainly include:(1)Not only the GCTCV-Foc TR4 interaction(quantitative resistance)but also Cavendish-Foc race 1 interaction(qualitative resistance)should be further studied.(2)Fusarium wilt-resistant banana lines are anticipated to be obtained by using the modified CRISPR/Cas9 genome editing system. And sustainable and stable resistance to Foc will be pursued by using the technology of host-induced gene silencing (HIGS).(3)The established in vitro hydroponic system of banana plantlet will be used to study banana-Foc interaction.