-
辣椒(Capsicum annuum L.)是华南地区(包括广东、广西、海南)南菜北运最重要的蔬菜,其中广东省年辣椒播种面积达9.92 万hm2 左右,居全省蔬菜播种面积的第2 位;广西年播种面积也达8.53 万hm2;海南年播种面积为4.59 万hm2。辣椒生产已成为华南地区许多地市的特色农业、扶贫攻坚的支柱产业或当地的主要经济作物,为繁荣地方经济作出了重要贡献。华南地区辣椒品种种类繁多, 有羊角椒、甜椒、泡椒、指天椒、线椒、螺丝椒、 美人椒等,其中湛江、茂名、阳江等粤西地区种植品种主要有羊角椒、指天椒、泡椒、线椒、甜椒、 螺丝椒、美人椒等类型;惠州、河源等粤东地区种植品种主要有羊角椒、指天椒、泡椒、线椒、螺丝椒等类型;韶关、清远等粤北山区种植品种主要有青皮椒、黄皮椒、指天椒、泡椒、线椒、美人椒等类型;广州、江门、肇庆、中山、东莞等珠江三角洲地区种植品种主要有青皮椒、指天椒、泡椒、线椒等类型。目前,华南地区开展辣椒品种选育及育种技术研究的单位主要有广东省农业科学院蔬菜研究所、海南省农业科学院蔬菜研究所、广西农业科学院蔬菜研究所、华南农业大学园艺学院、广州市农业科学研究院、中国热带农业科学院热带作物品种资源研究所、三亚市南繁科学院、茂名市茂蔬种业科技有限公司、广州绿霸种苗有限公司等。广东省农业科学院蔬菜研究所辣椒课题组自1994 年成立以来,专注于辣椒品种选育及育种技术、栽培技术研究,经过课题组近30 年的不懈努力,取得较好成绩。至2020 年,共选育辣椒品种19 个,其中5 个通过国家农作物品种审(鉴)定、3 个通过农业农村部品种登记,选育品种已在广东、广西、海南、湖南等省区大面积种植;获广东省科学技术进步二等奖3 项、三等奖1 项,获广东省农业技术推广二等奖2 项,获国家发明专利6 项,发表相关科技论文93 篇。在辣椒育种技术研究方面,华南地区主要对辣椒抗青枯病转基因育种技术、耐高温耐湿涝育种技术、抗疫病遗传规律及QTL、雄性不育育种技术等进行了研究。本文对华南地区辣椒品种选育及主要育种技术进行了概述,并对今后华南地区辣椒育种进行了展望。
-
1 华南地区辣椒品种选育研究
-
辣椒于1640 年左右传入中国,开辟了自繁自育历史,创造了丰富的辣椒品种资源,华南地区也产生了许多优良的地方品种。上世纪80 年代, 广东省农业科学院经济作物研究所和广州市蔬菜研究所等开始进行辣椒品种选育工作。1999 年, 广东省农业科学院蔬菜研究所李颖等、广州市蔬菜研究所黄邦海等选育出广东省第一代杂交一代辣椒品种粤椒一号、辣优4 号,这2 个品种于2002 年4 月通过国家农作物品种审定,成为华南地区第一代国审辣椒品种。通过广大辣椒育种工作者30 多年的努力,华南地区的辣椒品种选育工作取得了很大发展,选育的辣椒品种包括青皮椒、 黄皮椒、指天椒、线椒、螺丝椒、美人椒等类型, 其中粤椒一号、辣优4 号、茂椒4 号、东方神剑、 汇丰二号等品种在当时的辣椒种子市场占有较大份额。
-
1.1 广东省农业科学院蔬菜研究所选育品种
-
主要品种有粤椒一号、粤椒三号、粤椒90、 粤椒8 号、粤红1 号、粤红3 号、金田8 号、金田11 号[1]、福康1 号、福康2 号、福康3 号、福康6 号、福康7 号、福康8 号[2]、汇丰一号、汇丰二号、 汇丰3 号、粤研1 号、白秀一号等。最具代表性的品种有:
-
1.1.1 粤椒一号
-
该品种中早熟,丰产,果实粗牛角形,果皮绿色,有光泽,果长16 cm、宽3.8 cm, 肉厚0.23 cm,三心室,单果质量47 g,味微辣,每100 g鲜重Vc含量为120 mg;经苗期人工抗病性鉴定,高抗青枯病(发病率为9.9%)、中抗疫病(病情指数为35)和病毒病(病情指数为16)。 1999年通过广东省农作物品种审定委员会审定, 2002年通过全国农作物品种审定委员会审定(国审2002067)[3]。
-
1.1.2 汇丰二号
-
该品种早中熟,植株生长势强, 青果绿色,成熟果大红色,果实羊角形,果面光滑有光泽、无棱沟,果长18.2 cm、宽2.6 cm,果肉厚0.32 cm,单果质量39 g,单株产量0.55 kg;早熟性好、 抗病性强、适应性广、耐高温高湿,特别适宜在华南地区栽培[4]。2010—2013 年连续4 年被评为广东省农业主导品种,已连续销售超过10 年,目前已成为广东省辣椒主栽品种,其种植面积约占广东省青皮尖椒面积的35%,有力地促进了华南地区辣椒品种结构的调整和升级。
-
1.2 广州市农业科学研究院选育品种主
-
要品种有辣优2 号、辣优4 号、辣优8 号、 辣优9 号、辣优13 号、辣优15 号、辣优16 号等。 具有代表性的品种是辣优4 号。该品种植株生长势强,株形较平展,株高52 cm,开展度75 cm,叶色浓绿;熟性早,始花节位9 节,果实长牛角形, 果长18 cm、横径3.3 cm,果皮较光滑,色绿,肉厚0.3 cm,单果质量40 g;味辣,品质优良,商品性好[5]。
-
1.3 海南省农业科学院蔬菜研究所选育品种
-
主要品种有海椒3 号、 海椒5 号、 海椒109 等。具有代表性的品种是海椒5 号。该品种株高53 cm,株幅48 cm,分枝性中等,中熟偏早,前期挂果集中,单株挂果28 个;果实粗长、羊角形, 果长20 cm、果肩宽3.2 cm,果肉厚0.3 cm,单果质量55 g,果身匀直,果皮光滑,皮色黄绿;中抗病毒病,高抗炭疽病,适宜在海南、广东、广西等南菜北运基地推广[6]。
-
1.4 广西农业科学院蔬菜研究所、桂林市蔬菜研究所选育品种
-
主要品种有桂椒7号、桂椒8号、桂椒10号、桂牛5号、桂航2号等。具代表性的品种为桂椒7号。 该品种冬春茬栽培从播种到青熟果始收120 d,夏秋茬栽培从播种到青熟果始收95 d;植株生长势强,直立型,株高约92 cm,开展度74.4 cm,座果率高,果实长线形,果长20 cm、横径1.8 cm,果肉厚0.24 cm,单果质量21 g;青熟果深绿色,老熟果鲜红色,光滑亮丽,可鲜食或加工;耐热性强,抗病性好[7]。
-
1.5 华南农业大学园艺学院选育品种
-
主要品种有华椒5 号。该品种早中熟,从播种至始收春季93 d,秋季77 d;株高52 cm;第1 朵花着生节位9 节;青果浅绿色,熟果大红色; 果实长羊角形,果面光滑、有光泽,有棱沟,果皱缩,果实着生方向向下,果顶部渐细尖;果长18.2 cm、果宽2.81 cm,果肉厚0.32 cm;大果型, 单果质量37.6 g[8]。
-
1.6 中国热带农业科学院热带作物品种资源研究所选育品种
-
主要品种有热辣1 号、热辣2 号、热辣6 号等。 具有代表性的品种为热辣2 号。该品种生长势强, 叶表无毛;花梗长,花萼与花梗之间收缩,花白色, 花药黄色或浅蓝色,柱头中等或长;每节3~10 朵花;果实方灯笼至长灯笼形,未成熟果绿色或绿白色,生理成熟果黄色至深黄色;果长5.6 cm、宽3.9 cm,平均单果质量14.6 g;每果位1~3 个果,单株坐果约130 个;播种至开花约80 d,至大量收获约142 d;产量45000 kg/hm2; 抗黄瓜花叶病毒病; 果实具有浓郁香味, 辣度174212 SHU[9]。
-
1.7 茂名市茂蔬种业科技有限公司选育品种
-
主要品种有茂椒4 号、茂青5 号等。具有代表性的品种为茂椒4 号。该品种株形紧凑,株高约55 cm,开展度62 cm左右;播种至始收期春植99 d、秋植76 d;始花节位10 节,果实长羊角形, 纵径22 cm,横径3.5 cm,肉厚0.28 cm,单果质量60 g;味较辣,品质优良;青果黄绿色,熟果鲜红色, 果面光滑,光泽好,水分含量少,耐贮运,商品性好;座果力强,平均产量60000 kg/hm2[10]。
-
1.8 广州绿霸种苗有限公司选育品种
-
主要品种有东方神剑。该品种生长势强,株高46 cm,开展度58 cm,叶片小,中熟;播种至始收春季98 d,秋季78 d;始花节位10 节,果实羊角形,微辣,青果绿色,熟果大红色;果面平滑, 无棱沟,有光泽;果长16 cm、横径2.6 cm,果肉厚0.3 cm,单果质量38 g。
-
2 辣椒抗青枯病转基因技术研究
-
2.1 建立辣椒组织培养和植株再生体系
-
自George于1996 年首次开展辣椒组织培养[11] 以来,国内外相继有采用不同辣椒外植体(如子叶、茎尖、叶片、下胚轴、子叶柄、花药及原生质体等)组培成功的报道。余小林等[12]通过辣椒子叶离体培养建立了高效的植株再生体系,优选出辣椒子叶不定芽分化、生长及生根成苗的最佳培养基配方,建立了辣椒子叶高效分化再生体系:分化频率达100%,单个外植体小苗分化数目超过10 株, 辣椒组培再生周期缩短至44~50 d。LY是多种氨基酸混合物,主要成分为丝氨酸、谷氨酸钠、氨基丁酸等对不定芽诱导分化及生长有较强的促进作用。余小林等[12]在MS培养基中添加LY,配合添加5 mg/L 6-BA、1 mg/L IAA, 能较好地诱导辣椒子叶正常分化,分化频率最高可达100%;用LY配合6-BA 3 mg/L+IAA 1 mg/L+GA31 mg/L可使分化的不定芽正常生长,伸长频率平均可达75%,且重复性强、成功率高。对不同辣椒品种,上述最佳激素配比和添加物均能获得较高分化频率和伸长频率,说明该培养基配方和培养技术对辣椒子叶离体培养植株再生有着较为广泛的适应性。此外,LY能很好地解决辣椒组培中外植体褐化现象,保证分化苗的正常生长;而且从外植体接种至再生植株出瓶最快只需44 d,平均为50~55 d, 能基本满足遗传转化对受体再生体系的要求,同时为今后利用基因工程技术进行辣椒的品种改良奠定了基础。
-
2.2 利用双价抗菌肽基因转化辣椒
-
抗菌肽B和抗菌肽D是分别从天蚕和柞蚕血淋巴中诱导出的一类杀菌活性多肽,对假单孢青枯菌有强杀伤力[13]。为了提高辣椒基因整合效率和抗性表达能力,李乃坚等[14]运用重组技术将抗菌肽B、D基因构建于同一质粒pCDB-II中,质粒用三亲法转化根癌农杆菌LBA4404,以粤椒一号的一个亲本自交系为材料,采用农杆菌介导技术将抗菌肽B、D双价基因导入辣椒中以培育抗青枯病工程植株。余小林等[15]通过对工程植株进行分子生物学检测及连续多代接菌鉴定和农艺性状评价,选育出48-05-1-0、48-06-18-0、56-12-3-3、56-72-1-4 等4 份高抗青枯病株系。
-
2.3 建立植物抗青枯病鉴定新技术
-
作物进行苗期青枯病抗性鉴定时一般采用针刺叶脉法(离体或不离体)、浸根法和灌根法(土壤中),后两者又分伤根和不伤根两种处理。 Perera等[16]认为植株在接种青枯菌液时伤根与不伤根有很大差异,以辣椒杂交种Gi-ant Bell为材料, 接菌后25 d伤根植株发病率达60%、不伤根植株仅20%。无论采用何种方法,关键是品种的抗病特性得到正常表达。 李乃坚等[17]在对转基因辣椒抗青枯病鉴定方法研究基础上,发明了“鉴定植物抗青枯病能力的水培接菌法”并获得国家发明专利授权,能使病原菌均匀分布于植株受伤根系,并在一定时间内保持致病力。该研究表明水培青枯菌同样可使植株感染,发病后能迅速表现症状。水培法具有以下优点:(1)青枯菌分布均匀,能充分接触植株根系;(2)与土壤接菌相比,可减少其他土传病害的干扰,提高试验准确性;(3)抗病鉴定时容易进行人工控制;(4)可在较短时间内连续鉴定数量较大的参试材料;(5)经鉴定具有抗性的植株可移栽田间继续生长,且不伤根系,而目前通常采用的方法会造成植株再次伤根,对生长不利。
-
3 辣椒耐高温高湿机理研究
-
高温高湿是影响华南主产区辣椒生长发育、产量及品质形成的重要逆境因子。因此,了解辣椒的耐高温高湿性、合理评价耐高温高湿种质资源以及从分子生物学角度开展辣椒耐高温高湿研究,对筛选耐高温高湿资源、选育抗性品种、提高辣椒耐高温高湿性具有重要意义。
-
3.1 多角度多层次研究辣椒耐高温高湿评价体系
-
随着全球温室效应日益加剧,异常高温天气时有发生,高温条件下造成的热胁迫已成为辣椒生产的主要障碍因子。然而在自然界中,温度和湿度往往同时存在、相互影响,过高的温度和湿度易造成辣椒早衰、生育期缩短、病虫害加重、产量品质下降。因此,提高辣椒的耐高温高湿能力是华南产区育种研究的重要内容之一。徐小万等[18-21]利用主成分分析、因子分析、聚类分析、多重回归分析、 隶属函数分析、灰色关联度分析、层次分析和多维空间坐标分析等多变量统计方法,从芽期、苗期和现蕾期等多生育期,开展辣椒耐高温高湿鉴定,建立了辣椒耐高温高湿评价体系,综合分析发现上述3 个生育期以苗期为最佳,并建立了评价方法。
-
3.2 多组学研究辣椒耐高温高湿机制
-
为进一步揭示辣椒耐高温高湿机制,徐小万等[22]对辣椒现蕾期叶片抗氧化系统开展了相关研究,结果表明抗氧化剂类的贡献大于抗氧化酶类, 辣椒耐高温高湿性与抗氧化性并不一致,且耐热湿辣椒在高温高湿胁迫下膜损伤程度显著轻于热湿敏感品种;应用cDNA-AFLP技术,对高温高湿胁迫4~6 片叶期辣椒叶片基因表达进行了转录本衍生片段分析,共分离得到315 条TDFs,其中4 条在耐高温高湿材料中特异表达、5 条在热湿敏感材料中特异表达,为获得有价值的耐热湿相关基因奠定了基础[23]。 Xu等[24] 以耐高温高湿辣椒成熟功能叶为材料进行转录组测序,最终获得66571508 个片段,检索到53679 个编码蛋白序列,在96340 个Unigenes中检测到5426 个SSR位点;同时还预测到5960 个SNP标记,并对其碱基转换进行了分析。 Li等[25]应用RNA-Seq技术对辣椒在热胁迫下的基因表达谱进行分析,共获得21、954、497 个转录本,耐逆材料R597 经高温胁迫处理后有2141 个差异基因表达上调、1658 个差异基因表达下调, 敏感材料S590 受高温诱导后检测到4010 个差异基因,其中2093 个差异基因表达量上调、1917 个差异基因表达量下降,可见次生代谢产物合成和热激转录因子提高了辣椒耐高温高湿能力。 microRNA(miRNA)是一类内源性非编码小分子RNA,在许多植物的发育和应激反应过程中扮演着重要角色。Xu等[26]以耐高温高湿材料和热湿敏感材料为研究对象,采用高通量Solexa测序技术,分别在4 个RNA库中分别获得相关数据, 发现小RNA的长度分布在RNA文库之间差异显著,Unique sRNA序列较总RNA序列存在更广泛的特异性,说明高温高湿处理对两个辣椒材料中的小RNA表达有非常显著的影响。统计共发现78 个miRNAs在抗性材料中受高温高湿诱导表达差异显著,其中60 个miRNAs表达量显著上升、18 个miRNAs表达量显著下降,以miR3631 上调最为明显、表达量为原来的16.4 倍,miR6253 下调最为明显、表达量为原来的14.7 倍;分别从miRNAs预测到多个潜在靶基因位点。 徐小万等[27]以耐高温高湿材料和热湿敏感材料为试材,在全基因组水平上研究了二者在高温高湿胁迫下DNA甲基化水平及模式变化特征差异。 结果表明,高温高湿胁迫诱导的DNA甲基化水平变化具有品种特异性,耐高温高湿品种与高温高湿敏感品种在高温高湿胁迫下甲基化状态存在一定差异;两个材料高温高湿胁迫诱导的甲基化修饰模式间的变化可能在一定程度上与基因组的转录活性密切相关,进而影响到不同抗性辣椒品种的耐高温高湿性。
-
4 辣椒抗疫病遗传规律及QTL研究
-
辣椒疫病是由辣椒疫霉菌(Phytophthora capsici Leonian)引起的一种土传病害,在世界范围内广泛传播[28]。培育辣椒抗疫病品种是防治该病害的有效途径之一,其中通过鉴定、定位疫病抗性基因(QTL)并通过分子标记辅助育种培育抗疫病品种被认为是最经济、最高效和最安全的方法。 野生辣椒对疫霉菌具有较高抗性,栽培种通过与野生辣椒进行杂交也能获得较高的抗病性。目前国际公认的辣椒抗疫病材料有墨西哥的小果型辛辣品种CM334[29-30]以及中美洲的AC2258[31-32]、 PI201232[33]、PI201234[34]。 研究表明,CM334 对来源于多个国家和地区的辣椒疫霉生理小种均表现出高水平抗性[35-37],已在辣椒抗病研究和育种中广泛应用。 辣椒疫病抗性遗传机制复杂,研究结果与所用遗传群体、疫霉菌生理小种和表型筛查条件有关, 目前已报道的研究结果呈现出单基因、二基因和多基因遗传3 种模式。Saini等[38]发现一个灯笼椒品种对果腐疫病抗性表现为显性单基因控制,而后多项研究发现辣椒根腐、茎枯和叶枯疫病抗性分别由不同显性单基因控制[39-42]。Smith等[31]首次报道了辣椒疫病抗性遗传的二基因系统,认为存在两个独立显性基因共同控制辣椒根腐疫病的抗性。多项研究结果表明辣椒疫病抗性性状由多个基因共同控制[30,35-37,43]。研究认为,导致辣椒疫病抗性遗传机制变得复杂的原因主要有两个:一是由于病原菌侵染部位的不同,感病植株表现出根腐、果腐、 茎枯和叶枯等不同病症[44],且根腐、果腐、茎枯和叶枯疫病抗性的遗传机理并不完全相同[40];二是由于辣椒疫霉菌存在生理小种分化,同一抗病材料对不同辣椒疫霉菌生理小种的抗性存在明显差异[44-45]。 由于辣椒疫病抗性基因遗传机制复杂,辣椒疫霉存在生理小种分化[46],这给辣椒疫病抗性基因(QTL)的分子标记辅助选择育种带来诸多困难, 育种家几乎不可能育成一个对所有辣椒疫霉菌生理小种都具有完全抗性的品种。针对其数量抗性的特点,在育种实践中重点利用的是其主效抗性基因; 针对其特异抗性的特点,应针对当地疫霉菌种鉴定抗性基因并将其定位,并通过回交转育和分子标记辅助选择将抗性基因转移到当地辣椒主栽品种中获得抗性。 对抗性基因(或主效QTL)的定位是利用分子标记辅助选育辣椒抗疫病品种的前提,从目前研究报道来看,已定位的辣椒疫病抗性基因(或主效QTL)并不多。Lefebvre等[29]利用分子标记定位到一个位于5 号染色体的主效QTL位点,该位点对于辣椒疫病的抗性具有41%~55%的贡献率。 Liu等[47] 利用BSA法筛选到一个与主效QTL位点连锁的Single Position Polymorphism(SPP)标记Phyto5SAR,该标记同样定位于辣椒基因组5 号染色体,并且该标记位点对低毒性的疫霉菌生理小种具有约90%的抗性贡献。Rehrig等[48]利用一个由66 个RIL(抗性亲本为CM334、感病亲本为Early Jalapeño)群体构成的高密度连锁图谱定位到一个基因CaDMR1,可能是辣椒对疫霉菌的抗性基因。 Wang等[41]利用抗性材料PI201234 与一个甜椒感病材料Shanghaiyuan构建的杂交群体F2、BC1P1 与BC1P2 进行遗传分析,发现PI201234 对辣椒疫霉菌生理小种2 的抗性是由一个单显性基因控制的, 并将该基因定位到辣椒基组5 号染色体的3.3 cM区间内。广东省农业科学院蔬菜研究所利用从国外引进的抗疫病材料CM334 和高世代纯合感病材料10399 为亲本构建遗传分离群体,并对辣椒根腐疫病抗性遗传规律进行研究,结果表明在广东省辣椒疫霉菌优势生理小种Race 3[49]侵染下,辣椒根腐疫病抗性性状为显性单基因控制。在此基础上, 该团队利用SLAF-seq并结合BSA方法将抗性基因PhR10 定位在16.39 Mb区间内,随后加大群体并加密标记,进一步将抗性基因PhR10 定位在约2.6 Mb范围内[42]。
-
5 辣椒雄性不育研究
-
在辣椒繁制种中,利用辣椒雄性不育系(CMS系)繁育杂交一代种子,不仅能简化制种程序、降低制种成本,还可以提高种子纯度。目前广东省多家育种单位报道选育成功辣椒CMS系,并成功实现三系配套及应用。
-
5.1 辣椒雄性不育系和保持系选育
-
辣椒CMS不育性由细胞质和细胞核共同作用产生。育种工作者通常以不育株或不育系为母本, 选取综合性状优良的纯合自交系为父本成对测交, 观察F1 的育性,选择不育度为100%的亲本〔即基因型为N(msms)的父本为轮回转育亲本〕进行回交转育,淘汰育性分离的株系。通过一次杂交和连续回交3~4 代即可获得具有转育亲本性状的不育系,同时转育亲本连续自交可获得相应保持系。 目前,广东省农业科学院蔬菜研究所选育出大果型青椒不育系和保持系4556A与4556B[50]、 2298A与2298B[51]、线椒不育系和保持系3901A和3901B、 朝天椒不育系和保持系3816A和3816B。广州市农业科学研究院成功创制出10 对不育株率达100%、不育度达99%以上的辣椒胞质雄性不育系和保持系,包括32A与32、33A与33、 21A与21、384A与384、385A与385、862A与862、483A与483、487A与487、556A与556、 561A与561 等[52]。
-
5.2 辣椒恢复系选育
-
王恒明等[50]利用4556A与103 个辣椒纯系测交配组发现,仅有30 个组合育性全部恢复并能正常结果,其中15 个小果型纯系与4556A配置的测交组合全部恢复。徐小万等[53]利用SCAR引物对359 份未知育性的辣椒进行恢复基因的鉴定,结果显示35 份材料有恢复基因特异条带,占9.75%。可见,在辣椒三系选育中,保持不育的资源非常丰富,而恢复资源较少。因此,直接测交筛选恢复系予以应用有一定困难,仍需要进一步通过回交转育或恢复基因累加等方法选育出大果型优良恢复系。 利用辣椒雄性不育系与恢复源材料杂交,以其F1 及后代高可育株作母本,再与优良辣椒自交系进行连续回交,在不育细胞质的基础上,将自交系的优良性状逐步转育到恢复源中,选育出新的具有不育系细胞质基因“S”的辣椒强优恢复系。 采用此方法,王恒明等[54]定向选育出青椒的恢复系3038、3039 和3045;黄贞等[55]成功转育了大果型N690 恢复系, 且从基因型为N(Msms)、 S(Msms)后代材料中选育出辣椒恢复系Z154、 X559、Z577、Z557、Y679。
-
5.3 辣椒CMS三系配套及应用
-
目前,质核互作不育型在生产上应用较为广泛, 广东省农业科学院蔬菜研究所利用已选育的不育系和恢复系,选育出线椒三系组合2501、朝天椒三系组合2511。广州市农业科学研究院利用胞质雄性不育技术,选育出中熟长羊角椒辣优1 号、早熟羊角椒辣优2 号[56]、早熟长羊角椒辣优8 号[57]、 中早熟青红兼收辣椒辣优9 号[58]、中熟红椒辣优13 号[59]、中迟熟红椒辣优14 号和辣优19 号[60] 以及叶用型品种农普辣椒叶。
-
5.4 辣椒雄性不育机理研究
-
吴智明等[61-63]以CMS不育系北A及其保持系北B、恢复系B162 和杂种F1 为材料,研究辣椒CMS雄性不育机理。结果发现,不育系北A花蕾中, IAA和ABA含量在各个时期均显著高于相应的保持系和恢复系,而ZRS含量则显著低于可育材料; GA3 含量在造孢细胞期至四分小孢子期呈缓慢降低的趋势,且在四分小孢子期显著低于可育材料。该课题组利用cDNA-AFLP差显技术比较分析不育系北A及其保持系北B蕾期基因的表达差异,通过对19 条差异转录片段进行序列同源性分析与功能分类,推测辣椒细胞质雄性不育的发生可能受到多种代谢途径的共同调控。该课题组还比较分析了不育系北A及其相应保持系北B的nad2、atpA和cob 3 个线粒体基因转录本的编辑位点,发现atpA基因转录本在不育系与保持系中都未发生编辑,nad2 基因在不育系中的编辑位点比保持系增加了3 处非C-U的特异编辑位点,cob基因在不育系与保持系中的编辑位点除5 处共同的C-U编辑外,各有1 处U-C和G-U的特异编辑位点;可见,保持系比不育系相应位点的编辑频率偏高。 Chen等[64-67]系统分析了辣椒核雄性不育两用系AB114 不育株和可育株花蕾的基因表达谱,发现了82 个辣椒花药特异基因,如Camf1、CaMF2、 CaPME1 等,并对主要差异基因进行了功能鉴定。 从辣椒可育株中克隆到的一个花粉发育特异基因CaMF2,在第4 级花蕾有一个表达高峰,而在不育株中任何部位均不表达,沉默CaMF2 后辣椒材料的萌发率比对照花粉下降50%,该基因在辣椒花粉发育和萌发中起重要作用,为进一步揭示花粉发育的分子机理奠定了基础。
-
6 展望
-
6.1 加强抗逆性辣椒新品种选育
-
华南地区北运辣椒种植始于上世纪80 年代中后期,连年种植加上广东特有的高温多雨天气等因素,使得辣椒病害频繁发生,尤其辣椒疫病是华南地区最严重的致死性病害。同时,持续的高温高湿天气导致辣椒落花落果、减产甚至绝收,直接影响到农民经济收益,给椒农造成重大损失。培育抗病、 耐高温高湿新品种是华南地区辣椒育种者的首要目标,以满足多样化的市场需求。
-
6.2 多样化育种
-
华南地区作为我国主要辣椒产区之一,辣椒品种繁多,产品类型丰富,在保证我国蔬菜周年均衡供应中占重要地位。由于多年的种植习惯、市场特点不同,各地区种植的辣椒类型也不一样,而且区域化明显。因此,培育多样化的辣椒品种类型才能适应激烈的种业市场竞争。
-
6.3 地方品种提纯复壮
-
目前华南地区各育种单位选育的辣椒品种均以杂交一代为主,有些地方品种如海南黄灯笼椒、广西天等指天椒、广东平远土椒、乳源公坑指天椒、 南雄辣椒等,由于农户长期种植,品种发生退化, 导致产量较低,产品品质、商品性均难以达到当前市场要求。因此,今后应重视对这些区域特色鲜明的地方品种进行提纯复壮,保持其优良品质。 [68]。
-
6.4 加强辣椒种质资源搜集及育种新技术应用
-
综合利用各种方法及技术,深入发掘和创新具有特异性状的辣椒新种质;进一步加强分子标记辅助育种技术、分子聚合技术和雄性不育系的研究及利用,加快辣椒新品种选育进程[68]。
-
(责任编辑 张辉玲)
-
李颖,三级研究员,院第四届茄果类学科带头人,广州市天河区第五、 六届政协委员,中国园艺学会辣椒分会理事,兼任华中农业大学硕士研究生导师,获广东省直机关2008 - 2010 年度巾帼建功先进个人。主要从事辣椒抗性机理、育种及高效栽培技术研究。先后承担省部、市等各级科研项目20 余项;获国家科技进步一等奖1 项,广东省科学技术奖二等奖3 项、三等奖2 项。主持选育出13 个辣椒新品种, 获国家发明专利5 项;发表科技论文30 余篇,参加编写出版科技著作2 部。选育的辣椒系列品种在广东、海南、广西等省区大面积推广应用,取得了显著的社会经济效益。 代表成果如下:(1)“优质、抗病、高产辣椒新品种选育及转基因育种技术研究”获2008 年度广东省科学技术奖二等奖(排名第一);(2)以第一完成人育成粤椒1 号辣椒,通过国家品种审定(国审菜2002067);(3)以第一作者在Gene上发表论文The dynamic transcriptome of pepper(Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance to Phytophthora capsici。
-
参考文献
-
[1]
李颖,王恒明,徐小万,徐晓美,黄智文.辣椒新品种‘金田11号’ [J].园艺学报,2019,46(4):807-808.DOI:10.16420/j.issn.0513-353x.2018-0337.[百度学术]LI Y,WANG H M,XU X W,XU X M,HUANG Z W.A new pepper cultivar ‘Jintian 11 ’[J].Acta Horticulturae Sinica,2019,46(4):807-808.DOI:10.16420/j.issn.0513-353x.2018-0337.[百度学术] -
[2]
宫超,李颖,王恒明,夏碧波,郭巨先,徐小万.辣椒新品种‘福康8号’ 的选育及其特性研究[J].农学学报,2018,8(8):57-60.[百度学术]GONG C,LI Y,WANG H M,XIA B B,GUO J X,XU X W.Breeding and characteristics of a new pepper variety‘Fukang 8’[J].Journal of Agriculture,2018,8(8):57-60.[百度学术] -
[3]
李颖.早熟辣椒新品种粤椒一号[J].长江蔬菜,2000(5):24.[百度学术]LI Y.A new early-maturing pepper variety Yuejiao No.1[J].Yangtze River Vegetables,2000(5):24.[百度学术] -
[4]
王恒明,李颖,郑会龙,孙泽才,钟崇建.汇丰2号辣椒高产栽培技术[J].上海蔬菜,2017(1):21-22.[百度学术]WANG H M,LI Y,ZHENG H L,SUN Z C,ZHONG C J.Highyield cultivation techniques of hot pepper variety Huifeng No.2[J].Shanghai Vegetables,2017(1):21-22.[百度学术] -
[5]
黄邦海,常绍东,黄贞,王佩卿,谭伯杭,闫友晖.辣椒新品种辣优4号的选育[J].中国蔬菜,2000(4):24-25.[百度学术]HUANG B H,CHANG S D,HUANG Z,WANG P Q,TAN B H,YAN Y H.Breeding of a new pepper variety Layou 4[J].Chinese Vegetables,2000(4):24-25.[百度学术] -
[6]
肖日新,陈贻诵,高芳华.辣椒新品种海椒5号的选育[J].长江蔬菜,2007(10):36-37.[百度学术]XIAO R X,CHAN Y S,GAO F H.Breeding of a new hot pepper variety Haijiao No.5[J].Yangtze River Vegetables,2007(10):36-37.[百度学术] -
[7]
何铁光,赵坤,董文斌,唐胜,龚明霞,程亮,王日升,车江旅,张朝明.辣椒新品种桂椒7号的选育[J].中国蔬菜,2013(24):88-91.[百度学术]HE T G,ZHAO K,DONG W B,TANG S,GONG M X,CHENG L,WANG R S,CHE J L,ZHANG C M.Breeding of a new pepper variety Guijiao No.7[J].Chinese Vegetables,2013(24):88-91.[百度学术] -
[8]
雷建军,陈国菊,曹必好,曾国平,陈清华,许奕进.辣椒新品种‘华椒5号’[J].园艺学报,2012,39(7):1413-1414.[百度学术]LEI J J,CHEN G J,CAO B H,ZENG G P,CHEN Q H,XU Y J.New pepper variety ‘Huajiao No.5’[J].Acta Horticulturae Sinica,2012,39(7):1413-1414.[百度学术] -
[9]
曹振木,刘维侠,党选民,廖易.酱用型辣椒新品种热辣2号的选育[J].中国蔬菜,2008(8):31-33.DOI:10.16420/j.issn.0513-353x.2008.10.033.[百度学术]CAO Z M,LIU W X,DANG X M,LIAO Y.Breeding of a new hot pepper variety Rela 2 for sauce[J].Chinese Vegetables,2008(8):31-33.DOI:10.16420/j.issn.0513-353x.2008.10.033.[百度学术] -
[10]
孙启迪,吕庆芳,丘秋成,李映志,丰锋,叶春海.辣椒新品种‘茂椒4号’[J].园艺学报,2011,38(6):1211-1212.DOI:10.16420/j.issn.0513-353x.2011.06.030.[百度学术]SUN Q D,LYU Q F,QIU Q C,LI Y Z,FENG F,YE C H.A new hot pepper cultivar ‘Maojiao 4’[J].Acta Horticulturae Sinica,2011,38(6):1211-1212.DOI:10.16420/j.issn.0513-353x.2011.06.030.[百度学术] -
[11]
TSAFTARIS A.The development of herbicide-tolerant transgenic crops [J].Field Crops Research,1996,45:115-123.DOI:10.1016/0378-4290(95)00064-X.[百度学术] -
[12]
余小林,李乃坚,黄自然,李颖.辣椒子叶离体培养和植株再生体系的建立[J].园艺学报,2000,27(1):42-46.[百度学术]YU X L,LI N J,HUANG Z R,LI Y.Establishment of pepper cotyledon in vitro culture and plant regeneration system[J].Acta Horticulturae Sinica,2000,27(1):42-46.[百度学术] -
[13]
李文楚,卢铿明,黄自然.柞蚕抗菌肽D杀菌机理研究[J].蚕业科学,1991,17(3):163-168.[百度学术]LI W C,LU J M,HUANG Z R.Study on the bactericidal mechanism of tussah antibacterial peptide D[J].Sericulture Science,1991,17(3):163-168.[百度学术] -
[14]
李乃坚,余小林,李颖,黄自然,张银东,王得元.双价抗菌肽基因转化辣椒[J].热带作物学报,2000,21(4):45-51.[百度学术]LI N J,YU X L,LI Y,HUANG Z R,ZHANG Y D,WANG D Y.Transformation of pepper with bivalent antimicrobial peptide gene [J].Acta Tropical Crops,2000,21(4):45-51.[百度学术] -
[15]
余小林,李乃坚,李颖,黄自然,曹家树.辣椒不同品种与不同分化批次的再生植株对其基因转化频率的影响[J].浙江大学学报,2000,26(4):437-440.[百度学术]YU X L,LI N J,LI Y,HUANG Z R,CAO J S.Effects of regenerated plants of different pepper varieties and different differential batches on their gene transformation frequency[J].Journal of Zhejiang University,2000,26(4):437-440.[百度学术] -
[16]
PERERA K D A,HARTMAN G L,POULOS J M.Introduction procedures and the evaluation of peppers forresistance to P.solanacearum bacterial wilt[J].The Australian Center for International Agricultural Research,1992,85(4):193-198.[百度学术] -
[17]
李乃坚,黄爱兴,袁四清,王得元.茄科作物抗青枯病水培法鉴定研究[J].广东农业科学,2000,27(4):38-40.DOI:10.16768/j.issn.1004-874X.2000.03.017.[百度学术]LI N J,HUANG A X,YUAN S Q,WANG D Y.Study on identification of solanaceous crops' resistance to bacterial wilt by hydroponics [J].Guangdong Agricultural Sciences,2000,27(4):38-40.DOI:10.16768/j.issn.1004-874X.2000.03.017.[百度学术] -
[18]
徐小万,雷建军,李颖,王恒明,徐晓美,罗少波.基于数学模型的辣椒芽期耐高温多湿性综合评价方法[J].中国农业科技导报,2013,15(6):174-180.DOI:10.3969/j.issn.1008-0864.2013.06.27.[百度学术]XU X W,L EI J J,L I Y,WANG H M,XU X M,LUO S B.Comprehensive evaluation of high temperature and humidity tolerance of hot pepper at germination stage based on Mathematical Model[J].Journal of Agricultural Science and Technology,2013,15(6):174-180.DOI:10.3969/j.issn.1008-0864.2013.06.27.[百度学术] -
[19]
徐小万,雷建军,李颖,罗少波,王恒明,徐晓美,李涛.现蕾期辣椒耐高温多湿性 CA-TOPSIS 综合评定[J].热带作物学报,2013,34(9):1747-1751.DOI:10.3969/j.issn.1000-2561.2013.09.021.[百度学术]XU X W,LEI J J,LI Y,LUO S B,WANG H M,XU X M,LI T.Comprehensive evaluation for high temperature and humidity resistance in pepper(Capsicum annuum L.)budding[J].Chinese Journal of Tropical Crops,2013,34(9):1747-1751.DOI:10.3969/j.issn.1000-2561.2013.09.021.[百度学术] -
[20]
徐小万,雷建军,罗少波,曹必好,陈国菊,李颖,王恒明.辣椒苗期耐热耐湿鉴定方法的研究[J].核农学报,2009,23(5):884-890.[百度学术]XU X W,LEI J J,LUO S B,CAO B H,CHEN G J,LI Y,WANG H M.Identification of hot pepper(Capsicum annuum L.)seeding for high temperature and air humidity resistance[J].Journal of Nuclear Agricultural Sciences,2009,23(5):884-890.[百度学术] -
[21]
徐小万,雷建军,罗少波,李颖,王恒明,田永红,曾莉.高温高湿对不同品种(系)现蕾期辣椒(Capsicum annuum L.)抗氧化性的影响[J].核农学报,2010,24(2):394-400.[百度学术]XU X W,LEI J J,LUO S B,LI Y,WANG H M,TIAN Y H,ZENG L.Effects of high temperature and air humidity stress on antioxidant activity differences of hot pepper varieties at budding stage[J].Journal of Nuclear Agricultural Sciences,2010,24(2):394-400.[百度学术] -
[22]
徐小万,雷建军,罗少波,李颖,王恒明,曹必好,陈国菊.辣椒耐高温高湿生理生化性状灰色关联度分析[J].西北农业学报,2009,18(5):241-245.DOI:10.3969/j.issn.1004-1389.2009.05.052.[百度学术]XU X W,LEI J J,LUO S B,LI Y,WANG H M,CAO B H,CHEN G J.Gray relational grade analysis of physic-biochemical traits related to high temperature and air humidity resistance in hot pepper[J].ActaAgriculturae Boreali-occidentalis Sinica,2009,18(5):241-245.DOI:10.3969/j.issn.1004-1389.2009.05.052.[百度学术] -
[23]
徐小万,雷建军,李颖,王恒明.利用 cDNA-AFLP 技术分析不同耐性辣椒叶片表达差异[J].分子植物育种,2011(9):1486-1491.DOI:10.5376/mpb.cn.2011.09.0066.[百度学术]XU X W,LEI J J,LI Y,WANG H M.cDNA-AFLP analysis of differentially expressed genes in hot pepper leaves under high temperature and high air humidity[J].Molecular Plant Breeding,2011(9):1486-1491.DOI:10.5376/mpb.cn.2011.09.0066.[百度学术] -
[24]
XU X W,LI T,LI Y,WANG H M,XU X M.De Novo assembly and characterization of the transcriptome and molecular discovery in Capsicum annuum L.R597[J].International Journal of Control and Automation,2015,8(2):105-116.DOI:10.14257/ijca.2015.8.2.11.[百度学术] -
[25]
LI T,XU X W,LI Y,WANG H M,LI Z X.Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper(Capsicum annum L.)cultivars under heat Stress[J].Journal of Plant Biology,2015,58:411-424.DOI:10.1007/s12374-015-0423-z.[百度学术] -
[26]
XU X W,LI T,LI Y,LI Z X.Identification and analysis of Capsicum annuum microRNAs by high-throughput sequencing and their association with high temperature and high air humidity stress[J].International Journal Bioautomation,2015,19(4):459-472.[百度学术] -
[27]
徐小万,雷建军,张长远,李颖,王恒明,李涛,徐晓美.高温多湿胁迫下辣椒DNA甲基化分析[J].核农学报,2014,28(7):1175-1180.DOI:10.11869/j.issn.100-8551.2014.07.1175.[百度学术]XU X W,LEI J J,ZHANG C Y,LI Y,WANG H M,LI T,XU X M.Methylation-sensitive amplified polymorphism analysis of DNA methylation in hot pepper under high temperature and air humidity stress[J].Journal of Nuclear Agricultural Sciences,2014,28(7):1175-1180.DOI:10.11869/j.issn.100-8551.2014.07.1175.[百度学术] -
[28]
LEONIAN L H.Stem and fruit blight of peppers caused by Phytophthora capsici[J].Phytopathology,1922,12(9):401-408.[百度学术] -
[29]
LEFEBVRE V,PALLOIX A.Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease:a case study,the interaction pepper-Phytophthora capsici Leonian[J].Theoretical and Applied Genetics,1996,93(4):503-511.DOI:10.1007/BF00417941.[百度学术] -
[30]
THABUIS A,PALLOIX A,PFLIEGER S,DAUBÈZE A M,CARANTA C,LEFEBVRE V.Comparative mapping of Phytophthora resistance loci in pepper germplasm:evidence for conserved resistance loci across Solanaceae and for a large genetic diversity [J].Theoretical and Applied Genetics,2003,106(8):1473-1485.DOI:10.1007/s00122-003-1206-3.[百度学术] -
[31]
SMITH P G,KIMBLE K A,GROGAN R G,MILLETT A H.Inheritance of resistance in peppers to Phytophthora root rot[J].Phytopathology,1967,57:377-379.[百度学术] -
[32]
SUGITA T,YAMAGUCHI K,KINOSHITA T,YUJI K,SUGIMURA Y,NAGATA R,KAWASAKI S,TODOROKI A.QTL analysis for resistance to Phytophthora blight(Phytophthora capsici Leon.)using an intraspecific doubled-haploid population of Capsicum annuum[J].Breeding Science,2006,56(2):137-145.DOI:10.1270/jsbbs.56.137.[百度学术] -
[33]
ORTEGA R G,ESPAÑOL C P,ZUECO J C.Interactions in the pepper-Phytophthora capsici system[J].Plant Breeding,1995,114(2):74-77.[百度学术] -
[34]
OGUNDIWIN E A,BERKE T F,MASSOUDI M,BLACK L L,HUESTIS G,CHOI D,LEE S,PRINCE J P.Construction of 2intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper(Capsicum annuum L.)[J].Genome,2005,48(4):698-711.DOI:10.1139/g05-028.[百度学术] -
[35]
BONNET J,DANAN S,BOUDET C,BARCHI L,SAGE-PALLOIX A,CAROMEL B,PALLOIX A,LEFEBVRE V.Are the polygenic architectures of resistance to Phytophthora capsici and P.parasitica independent in pepper?[J].Theoretical and Applied Genetics,2007,115(2):253264.DOI:10.1007/s00122-007-0561-x.[百度学术] -
[36]
KIM H,NAHM S,LEE H,YOON G,KIM K,KANG B,CHOI D,KWEON O Y,CHO M,KWON J,HAN J,KIM J,PARK M K,AHN J H,CHOI S H,HER N H,SUNG J,KIM B.BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper(Capsicum annuum L.)[J].Theoretical and Applied Genetics,2008,118(1):15-27.DOI:10.1007/s00122-008-0873-5.[百度学术] -
[37]
MINAMIYAMA Y,TSURO M,KUBO T,HIRAI M.QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map[J].Breeding Science,2007,57(2):129-134.DOI:10.1270/jsbbs.57.129.[百度学术] -
[38]
SAINI S S,SHARMA P P.Inheritance of resistance to fruit rot(Phytophthora capsici Leon.)and induction of resistance in bell pepper(Capsicum annuum L.)[J].Euphytica,1978,27(3):721-723.DOI:10.1007/BF00023707.[百度学术] -
[39]
MONROY-BARBOSA A,BOSLAND P W.Genetic analysis of Phytophthora root rot race-specific resistance in chile pepper[J].Journal of the American Society for Horticultural Science,2008,133(6):825-829.DOI:10.21273/JASHS.133.6.825.[百度学术] -
[40]
SY O,BOSLAND P W,STEINER R.Inheritance of Phytophthora stem blight resistance as compared to Phytophthora root rot and Phytophthora foliar blight resistance in Capsicum annuum L.[J].Journal of the American Society for Horticultural Science,2005,130(1):75-78.DOI:10.21273/JASHS.130.1.75.[百度学术] -
[41]
WANG P,WANG L,GUO J,YANG W,SHEN H.Molecular mapping of a gene conferring resistance to Phytophthora capsici Leonian race 2 in pepper line PI201234(Capsicum annuum L.)[J].Molecular Breeding,2016,36(6):66.DOI:10.1007/s11032-016-0464-0.[百度学术] -
[42]
XU X,CHAO J,CHENG X,WANG R,SUN B,WANG H,LUO S,XU X,WU T,LI Y.Mapping of a novel race specific resistance gene to Phytophthora root rot of pepper(Capsicum annuum)using bulked segregant analysis combined with specific length amplified fragment sequencing strategy[J].PLOS ONE,2016,11:e1514013.DOI:10.1371/journal.pone.0151401.[百度学术] -
[43]
TRUONG H T H,KIM K T,KIM D W,KIM S,CHAE Y,PARK J H,OH D G,CHO M C.Identification of isolate-specific resistance QTLs to Phytophthora root rot using an intraspecific recombinant inbred line population of pepper(Capsicum annuum)[J].Plant Pathology,2012,61(1):48-56.DOI:10.1111/j.1365-3059.2011.02483.x.[百度学术] -
[44]
RISTAINO J B.Intraspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina[J].Phytopathology,1990,80(11):1253-1259.[百度学术] -
[45]
OELKE L M,BOSLAND P W,STEINER R.Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum[J].Journal of the American Society for Horticultural Science,2003,128(2):213-218.DOI:10.21273/JASHS.128.2.0213.[百度学术] -
[46]
SY O,STEINER R,BOSLAND P W.Recombinant inbred line differential identifies race-specific resistance to Phytophthora rootrot in Capsicum annuum[J].Phytopathology,2008,98(8):867-870.DOI:10.1094/PHYTO-98-8-0867.[百度学术] -
[47]
LIU W,KANG J,JEONG H,CHOI H,YANG H,KIM K,CHOI D,CHOI G J,JAHN M,KANG B.Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper[J].Theoretical and Applied Genetics,2014,127(11):2503-2513.DOI:10.1007/s00122-014-2394-8.[百度学术] -
[48]
REHRIG W Z,ASHRAFI H,HILL T,PRINCE J,VAN D A.CaDMR1 Cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper(Capsicum annuum)[J].The Plant Genome,2014,7(2).DOI:10.3835/plantgenome2014.03.0011.[百度学术] -
[49]
李智军,龙卫平,郑锦荣,雷建军.广东辣椒疫霉菌分离鉴定及其致病力和生理小种分化研究[J].华南农业大学学报,2007,28(1):50-54.[百度学术]LI Z J,LONG W P,ZHENG J R,LEI J J.Isolation and identification of Phytophthora capsici in guangdong province and measurement of their pathogenicity and physiological race differentiation[J].Journal of South China Agricultural University,2007,28(1):50-54.[百度学术] -
[50]
王恒明,李颖,王得元,郭汉权.大果型辣椒雄性不育系4556A的选育[J].广东农业科学,2004,31(5):32-33.DOI:10.16768/j.issn.1004-874X.2004.05.013.[百度学术]WANG H M,LI Y,WANG D Y,GUO H Q.Breeding of large-fruited pepper male sterile line 4556A[J].Guangdong Agricultural Sciences,20 0 4,31(5):32-33.DOI:10.16768/j.issn.10 0 4-874X.2004.05.013.[百度学术] -
[51]
王恒明,罗少波,李颖,徐小万,郭汉权.辣椒核质雄性不育系2298A的选育[J].热带作物学报,2010(4):514-517.[百度学术]WANG H M,LUO S B,LI Y,XU X W,GUO H Q.Breeding of a new CMS pepper(Capsicum annuum L.)line 2298A[J].Acta Tropical Crops,2010(4):514-517.[百度学术] -
[52]
黄贞,常绍东,邹集文,刘玉平.辣椒胞质雄性不育(CMS)不育系的转育技术研究[J].内蒙古农业科技,2011(5):48-50.[百度学术]HUANG Z,CHANG S D,ZOU J W,LIU Y P.Transgenic breeding technique of pepper cytoplasmic male sterility line[J].Inner Mongolia Agricultural Science and Technology,2011(5):48-50.[百度学术] -
[53]
徐小万,黄旺平,吴智明,李涛,李颖,王恒明.应用分子标记筛选辣椒雄性不育恢复系研究[J].广东农业科学,2015,42(23):139-144.DOI:10.16768/j.issn.1004-874X.2015.23.070.[百度学术]XU X W,HUANG W P,WU Z M,LI T,LI Y,WANG H M.Screening of male sterile restorer line of pepper by molecular marker[J].Guangdong Agricultural Sciences,2015,42(23):139-144.DOI:10.16768/j.issn.1004-874X.2015.23.070.[百度学术] -
[54]
王恒明,罗少波,李颖,徐小万,郭汉权.辣椒恢复系选育及三系配套研究[J].热带作物学报,2009(12):1736-1739.[百度学术]WANG H M,LUO S B,LI Y,XU X W,GUO H Q.Selection of restorer lines and combination of three lines of hot pepper(Capsicum annuum L.)[J].Acta Tropical Crops,2009(12):1736-1739.[百度学术] -
[55]
黄贞,常绍东,邹集文,刘玉平.辣椒胞质雄性不育(CMS)恢复系的转育技术研究[J].华北农学报,2011,26(S):13-15.[百度学术]HUANG Z,CHANG S D,ZOU J W,LIU Y P.Study on transformation of r e stor e s l i ne i n p epp er[J].Jo u r n a l of No r t h C h i n a Agriculture,2011,26(S):13-15.[百度学术] -
[56]
常绍东,黄贞,黄邦海,王佩兴,郑岩松,闫友晖.早熟辣椒新品种辣优2号的选育[J].中国蔬菜,2002(1):20-21.[百度学术]CHANG S D,HUANG Z,HUANG B H,WANG P X,ZHENG Y S,YAN Y H.Breeding of a new early-maturing pepper variety Layou 2[J].Chinese Vegetables,2002(1):20-21.[百度学术] -
[57]
黄贞,常绍东,夏秀娴,张素平,曹翠文,邹集文.辣椒新品种辣优8号的选育[J].广东农业科学,2006,33(12):34-36.DOI:10.16768/j.issn.1004-874X.2006.12.013.[百度学术]HUANG Z,CHANG S D,XIA X X,ZHANG S P,CAO C W,ZOU J W.Breeding of a new pepper variety Layou 8[J].Guangdong Agricultural Sciences,2006,33(12):34-36.DOI:10.16768/j.issn.1004-874X.2006.12.013.[百度学术] -
[58]
常绍东,黄贞,郑岩松,沈雪林,吴锡清.辣椒新品种辣优9号的选育[J].辣椒杂志,2005(3):2-3.DOI:10.16847/j.cnki.issn.1672-4542.2005.03.002.[百度学术]CHANG S D,HUANG Z,ZHENG Y S,SHEN X L,WU X Q.Breeding of a new pepper variety Layou 9[J].Journal of China Capsicum,2005(3):2-3.DOI:10.16847/j.cnki.issn.1672-4542.2005.03.002.[百度学术] -
[59]
黄贞,邹集文,常绍东,刘玉平,郭爽,何自福.辣椒新品种‘辣优13号’ [J].园艺学报,2015,42(1):197-198.DOI:10.16420/j.issn.0513-353x.2014-0351.[百度学术]HUANG Z,ZOU J W,CHANG S D,LIU Y P,GUO S,HE Z F.A new hot pepper cultivar‘Layou 13’[J].Acta Horticulturae Sinica,2015,42(1):197-198.DOI:10.16420/j.issn.0513-353x.2014-0351.[百度学术] -
[60]
黄贞,刘玉平,谭雪.胞质雄性不育新品种辣优19号制种技术 [J].辣椒杂志,2017(3):12-14.DOI:10.16847/j.cnki.issn.1672-4542.2017.03.003.[百度学术]HUANG Z,LIU Y P,TAN X.Seed production techniques of new cytoplasmic male sterile variety — Layou 19[J].Journal of China Capsicum,2017(3):12-14.DOI:10.16847/j.cnki.issn.1672-4542.2017.03.003.[百度学术] -
[61]
吴智明,胡开林,符积钦,乔爱民.辣椒胞质雄性不育与花蕾内源激素含量的关系[J].华南农业大学学报,2010(4):1-4.[百度学术]WU Z M,HU K L,FU J Q,QIAO A M.Relationships between cytoplasmic male sterility and endogenous hormone content of pepper bud[J].Journal of South China Agricultural University,2010(4):1-4.[百度学术] -
[62]
吴智明,胡开林,乔爱民.辣椒胞质雄性不育系与保持系蕾期基因表达差异分析[J].园艺学报,2009,36(9):1311-1316.DOI:10.16420/j.issn.0513-353x.2009.09.012.[百度学术]WU Z M,HU K L,QIAO A M.Differential expression analysis in flower buds of CMS and its maintainer line of Capsicum annuum L.[J].Acta Horticulturae Sinica,2009,36(9):1311-1316.DOI:10.16420/j.issn.0513-353x.2009.09.012.[百度学术] -
[63]
吴智明,程蛟文,唐鑫,崔俊杰,胡开林.辣椒线粒体基因转录本编辑位点研究[J].核农学报,2012,26(1):49-53.[百度学术]WU Z M,CHENG J W,TANG X,CUI J J,HU K L.Editing sites in transcript of mitochnndrial gene in hot pepper[J].Journal of Nuclear Agricultural Sciences,2012,26(1):49-53.[百度学术] -
[64]
CHEN C M,CHEN G J,CAO B H,LEI J J.Transcriptional profiling analysis of genic male sterile–fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNASeq technology[J].Plant Cell,Tissue and Organ Culture,2015,122(2):465-476.DOI:10.1007/s11240-015-0784-5.[百度学术] -
[65]
CHEN C M,CHEN G J,HAO X F,CAO B H,ChEN Q H,LIU S Q,LEI J J.CaMF2,an anther-specific lipid transfer protein(LTP)gene,affects pollen development in Capsicum annuum L.[J].Plant Science,2011,181(4):439-48.DOI:10.1016/j.plantsci.2011.07.003.[百度学术] -
[66]
CHEN C M,HAO X F,CHEN G J,CAO B H,CHEN Q H,LIU S Q,LEI J J.Characterization of a new male sterility-related gene Camf1 in Capsicum annuum L.[J].Molecular Biology Reports,2012,39(1):737-744.DOI:10.1007/s11033-011-0793-3.[百度学术] -
[67]
CHEN C M,LIU S Q,HAO X F,CHEN G J,CAO B H,CHEN Q H,LEI J J.Characterization of a pectin methylesterase gene homolog,CaPME1,expressed in anther tissues of Capsicum annuum L.[J].Plant Molecular Biology Reporter,2012,30(2):403-412.DOI:10.1007/s11105-011-0358-6.[百度学术] -
[68]
王立浩,张正海,曹亚从,张宝玺.“十二五”我国辣椒遗传育种研究进展及其展望[J].中国蔬菜,2016(1):1-7.[百度学术]WANG L H,ZHANG Z H,CAO Y C,ZHANG B X.Research progress and prospects of chili genetics and breeding in my country during the Twelfth Five-Year Plan[J].Chinese Vegetables,2016(1):1-7.[百度学术]
-
摘要
辣椒是我国华南地区南菜北运最重要的种类。30 多年来,华南地区众多科研院所、高校和育种公司共同努力,选育了许多具有华南特色的优异品种,获得了较好的经济效益和社会效益。概述了华南地区辣椒新品种选育及主要育种技术研究进展:(1)辣椒新品种选育方面,华南地区已选育出青皮椒、黄皮椒、指天椒、 线椒等各类型品种,其中粤椒一号、辣优 4 号、茂椒 4 号、东方神剑、汇丰二号等在当时辣椒种子市场占有较大份额。(2)辣椒抗青枯病转基因技术研究方面,采用农杆菌介导法,将抗菌肽 B、D 基因导入辣椒,获得抗菌肽 B、D 基因转化辣椒抗青枯病工程株系,并获农业农村部批准进行田间试验。(3)辣椒耐高温、湿涝机理研究方面,通过高温高湿胁迫下植物生理生化、转录本衍生片段、DNA 甲基化、表达谱和 miRNA 等多组学数据, 揭示了辣椒耐高温高湿机制,阐明了辣椒杂交种基因均呈非加性的表达模式。(4)辣椒疫病特异抗性基因的精细定位方面,利用辣椒抗疫病材料 CM334 和感病材料 10399 为亲本构建遗传分离群体并对辣椒根腐疫病抗性遗传规律进行研究,表明在广东辣椒疫霉菌优势生理小种 Race 3 侵染下,辣椒根腐疫病抗性性状为显性单基因控制, 并将抗性基因 PhR10 定位在约 2.6 Mb 范围内。(5)辣椒雄性不育研究方面,利用回交或逆向回交系统选育技术, 选育出辣椒不育系、保持系和恢复系,实现辣椒三系配套并应用,同时对辣椒雄性不育机理进行了研究。针对华南地区气候特点及消费习惯,提出对未来华南地区辣椒育种研究的建议。
Abstract
Pepper is the most important vegetable in South China for transporting from south to north. Over the last more than 30 years, many scientific research institutes, universities and breeding companies in South China have worked together to breed numerous excellent cultivars with specific characteristics for South China, and have obtained good economic and social benefits. This study summarizes the research progress in new pepper cultivar breeding and the main breeding techniques in South China:(1)New pepper cultivar breeding: A series of cultivars belonging to green pepper, yellow pepper, cone pepper, line pepper, etc. were bred in South China, among which Yuejiao No. 1, Layou No. 4, Maojiao No. 4, Dongfang Shenjian, and Huifeng No. 2, held a large market share at that time.(2)Research on the transgenic technology of pepper with bacterial wilt resistance: Agrobacterium-mediated method was used to introduce the antibacterial peptide B and D genes into peppers to obtain transgenic pepper lines containing the antibacterial peptide B and D genes with bacterial wilt resistance and these lines were authorized by the Ministry of Agriculture and Rural Affairs for field experiments.(3)Research on the mechanism of pepper tolerance to high temperature and humidity: Multiple omics data obtained by physiology and biochemistry, transcript derived fragments, DNA methylation, expression profile and miRNAstudy under high temperature and humidity stress were used to reveal the mechanism of pepper tolerance to high temperature and humidity and it indicated that genes in the pepper hybrid cultivars showed a non-additive expression pattern.(4)Fine mapping of pepper phytophthora blight specific resistance genes: Pepper phytophthora blight resistant germplasm CM334 and susceptible germplasm 10399 were used for parents to construct a genetic segregation population and study the genetic rules of pepper phytophthora blight of root rot. The study indicated that the resistance trait of pepper phytophthora blight was controlled by a dominant single gene under the infection of the dominant Phytophthora capsici race(named Race3)in Guangdong Province, and the resistance gene PhR10 was mapped in the distance of about 2.6 Mb.(5)Research on pepper male sterility: the pepper sterile lines, maintainer lines and restorer lines were bred by backcrossing or reverse backcrossing system selection techniques to achieve the matching and application of the three-line combination and the mechanism of male sterility was studied. Suggestions were also put forward for future researches on pepper breeding in South China based on the climate characteristics and consumption habits in South China.
Keywords
South China ; pepper ; cultivar breeding ; breeding technology