-
随着全球气候变化、人口增长以及耕作规模的变化,由病虫害导致的全球主要农作物的产量损失严重威胁粮食安全。据统计,由于病虫害导致全球水稻产量损失25%~41%,玉米损失20%~41%,小麦损失10%~28%[1]。为减少农作物病虫害发生, 大量化学农药的施用给环境带来巨大负担,威胁人类健康。对于粮食生产而言,利用抗性资源(抗病基因)培育抗病品种是应对病害威胁的最经济、有效的方法,深入研究植物免疫及抗病机制更是发展绿色、高效病害防控技术的重要基础,是确保作物稳产、增产和优质的重要策略。 在与病原菌的长期抗衡和相互作用中,植物的监测、防御系统也在不断地进化,形成了多层次的防御机制,包括细胞外免疫,如气孔免疫、 根际免疫和胞间免疫;细胞表面和胞内受体介导的免疫识别、信号传递和协调;也包括细胞和组织免疫的异质性以及不同类型免疫层次之间的交叉协调。国际公认,植物拥有与动物相似的天然免疫系统(Innate Immunity system)[2]。植物的第一道免疫防线,是起始于细胞膜表面的模式识别受体蛋白(Pattern-Recognition Receptors, PRRs) 对病原/微生物相关分子模式(Pathogen/Microbeassociated Molecular Patterns, PAMPs/MAMPs) 或植物损伤相关分子模式(Damage-Associated Molecular Patterns, DAMPs)的识别、而激发的防御反应。PAMPs是包括细菌的鞭毛蛋白、 肽聚糖、脂多糖、几丁质等病原微生物保守的组分; DAMPs多为植物损伤后自身产生的小肽分子,如AtPeps、Oligogalacturonides和Systemin等[3]。 PRRs主要由跨膜受体激酶(Receptor Kinases, RKs)和跨膜受体蛋白组成,如FLS2、CERK1 和PEPR1/2 等。由PRRs识别PAMPs而触发的免疫反应,即模式分子激发的免疫(PAMP-triggered immunity, PTI)。PTI信号起始于PRRs对PAMPs的识别,PRRs通常需要与共受体蛋白结合、互作,通过位于细胞质的受体类激酶(Receptor-Like Cyto plasmic Kinases, RLCKs)来传递免疫信号,经由丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinase, MAPK)级联反应途径和Ca2+ 信号等途径, 实现对机体系统抗性的激活,如气孔开闭、防卫细胞的细胞壁增厚、产生裂解酶释放免疫诱导因子以及诱导病程相关(Pathogenesis-Related, PR) 基因表达等,限制病原体的入侵和增殖[2,4-6]。当病原微生物突破第一道防线,向寄主植物细胞注入毒性因子(Virulence Factors)或效应子(Effectors) 来抑制植物的PTI后, 可被植物细胞内的抗性基因(Resistance Genes, R Genes) 感知, 启动其抵抗效应子入侵的免疫反应(Effector-triggered immunity, ETI),即植物的第二道防线,主要是由一类具有核苷酸结合结构域和富亮氨酸重复序列的受体蛋白(Nucleotide-Binding Domain and Leucine-Rich Repeat Receptors, NLRs)介导的免疫反应。NLR受体能迅速识别特定的病原效应子而激活一系列免疫反应,在病原菌侵染点发生超敏反应(Hypersensitive Response, HR)将病原物杀死在局部侵染细胞中;并由信号传导网络延伸到远处组织,产生系统获得性抗性(Systemic Acquired Resistance, SAR)[2,4]。因抗性反应强烈而明显,所以目前NLR是报道最多的一类免疫受体蛋白, 该类抗病基因是抗病育种中最有利用价值也是应用最广的一类抗性基因。此外,一些数量性状位点(Quantitative Trait Locus,QTL)也具有调控植物抗性的功能[7]。 广谱抗性(Broad Spectrum Resistance, BSR)指一个基因对某一病原菌的不同小种或两种以上病原菌具有抗性。由于NLR通常只能识别一个或特定几个病原菌小种的效应子,因此经典的ETI抗病反应通常具有小种特异性[8]。而PTI免疫通常会引起植物发生一系列非特异辨识的、共通的防御反应, 增强植物对其他入侵病原物的抵御能力,因而介导PTI抗性的关键基因多具有广谱性。除此之外,一些可识别两种以上病原菌的PRRs、NLRs或QTLs也介导或广谱抗性;一些参与了防御信号调节的调控因子(Defense Regulators, DRs),因它们参与基因转录、蛋白翻译和修饰、胞内运输和代谢催化等各个环节,而具有抗谱广、抗性持久等特点[9]。 水稻生长的各个阶段会受到70 多种病原微生物的侵害,严重影响其生产安全。在这些病害中, 由稻瘟菌(Magnaporthe oryzae)引起的稻瘟病、 纹枯菌(Rhizoctonia solani)引致的纹枯病、水稻黄单胞菌(Xanthomonas oryzae pv.oryzae, Xoo) 和(Xanthomonas oryzae pv.oryzicola, Xoc)诱发的白叶枯病和条斑病,以及稻曲菌(Ustilaginoidea virens)引发的稻曲病是世界范围内具破坏性的水稻病害[4,7,9]。其中,稻瘟病是最具破坏性的水稻真菌病害,可导致全球水稻产量减少30%,是足以养活6000 万人的损失[8,10-11]。白叶枯病和条斑病是水稻上的主要细菌性病害,可使水稻产量减少20%~30%[12]。人们利用抗病资源已收到改良效果, 但由于水稻病原菌分布的多样性和易变性,小种专化特异性基因介导的水稻品种单一抗性衰退问题突出,迫切需要挖掘广谱抗性基因、阐释广谱抗病机理,并有效地应用于水稻优质抗病新品种选育,是该领域的必然发展方向。
-
1 水稻主要病害广谱抗性研究进展及现状
-
自1955 年Flor提出植物—病原菌互作的“基因对基因”假说以来[13],科学家们对抗性基因及抗病相关基因开展了广泛研究,克隆了一批调控植物抗性的基因。我国在植物免疫学领域发表论文量增长迅速,并在2015 年以后论文发表量跃居第一, 已经成为在国际上推动植物免疫学发展的重要生力军[14]。随着对广谱抗病的需求不断提升,各国对广谱抗病领域的研究也不断加强,据统计,近20年来全球农业领域关于广谱抗性研究的论文数量超过2500 篇,我国学者在该领域做出了突出贡献, 发表的研究论文占比28.54%,居世界第1 位[15]。 关于水稻抗病基因的报道主要集中于对稻瘟病和白叶枯病的抗性,其中对水稻稻瘟病抗性有贡献的有100 多个主效R基因和500 多个QTLs。具有白叶枯病抗性的主效基因超过40 个,有11 个基因被克隆。此外,也发现了一些对纹枯病、稻曲菌和病毒抗性有贡献的QTL基因,不过这些基因尚未克隆[7]。 其中,赋予水稻广谱抗性的主效R基因约有10 个, QTL有4 个,还有至少5 个DR基因对不同病原物表现出广谱抗性(表1)。
-
注:NBS-LRR,核苷酸结合位点-富含亮氨酸重复序列;RLK,受体样激酶;LRR-RLK,富含亮氨酸重复序列受体样激酶;TF,转录因子; TM,跨膜蛋白;TPR,三角状四肽重复;WAK,细胞壁相关激酶;M.oryzae,稻瘟病菌;Xoo,白叶枯病菌;Xoc,水稻黄单胞菌。上标字母代表基因类型,a:QTL,数量性状基因座;b: PRR,模式识别受体;c:DR,防御反应或防御相关。
-
Note: NBS-LRR, nucleotide-binding site-leucine-rich repeat; RLK, receptor-like kinase; LRR-RLK, leucine-rich repeat receptor-like kinase; TF, transcription factor; TM, transmembrane protein; TPR, Tetratrico peptide Repeats; WAK, wall-associated kinase; M.oryzae, Magnaporthe oryzae; Xoo, Xanthomonas oryzae pv.oryzae; Xoc, Xanthomonas oryzae pv.oryzicola.Superscript letters represent gene types, a: QTL, quantitative trait loci; b: PRR, pattern recognition receptor; c: DR, defense-responsive or defense-related.
-
1.1 稻瘟病广谱抗性资源的挖掘
-
在已克隆的37 个水稻稻瘟病R基因中,除了一个编码 β-凝集素受体激酶的Pi-d2[16]、一个编码包含ARM重复结构域的Ptr外,其他R基因都是显性基因,并且几乎都编码NLR蛋白[17]。 NLR基因一般特异识别与其对应的病原效应子,多不具有广谱性,目前被证实对来自世界各稻区生理小种表现出持久而广谱的抗源品种,多为自身包含了3~5 个抗病基因的稻种,如越南品种Tetep、西非稻种Moreberekan以及广泛栽培的稻种IR64 和三黄占2 号等[18]。而被证实具有广谱抗性的基因仅6 个左右,例如,从小粒野生稻IRBL9-W中分离的Pi9,对源自13 个国家的至少43 个稻瘟病菌小种达到高抗水平[19];Pi5 对来自菲律宾和韩国的32 个稻瘟病菌小种表现出抗性[20];Pi50 对来自中国各主要稻区的523 个稻瘟病菌生理小种表现出持久抗性,并已被用于水稻抗病育种[21];从抗病品种谷梅4 号克隆的Pigm对源于世界多国的50 个稻瘟病菌生理小种表现出持久抗性[22]。此外,分别从国际水稻所IRBL1、IR24 水稻品系中鉴定到的Pi1 和Pib,从泰国稻种Jao Hom Nin克隆到的Pi7 以及华南稻种三黄占2 号克隆的Pi56 也被报道具有稻瘟病广谱抗性[23-26]。 非典型NLR类的R基因在稻瘟病广谱抗性中也发挥了重要作用,但抗性往往没有NLR类R基因所介导的强。Pi21 是一种稻瘟病QTL基因,其编码一个具有富含脯氨酸的金属转运/解毒结构域的蛋白质,赋予了对稻瘟菌的非小种特异性抗性, 对水稻稻瘟病抗性具有负调控作用,其功能丧失的等位突变pi21 产生对广泛分布的10 个稻瘟病生理小种的广谱抗性[27]。ptr编码包含4 个Armadillo重复的蛋白,具有E3 连接酶活性的,正调控了水稻对多个稻瘟病菌小种的广谱抗性[28]。此外,因DR基因通过一定途径抵抗病原菌的入侵或参与防御信号调节,可以激发作物产生部分抗性(或不完全抗性),而具有抗谱广、抗性持久等特点。如具有E3 连接酶活性的环指蛋白OsBBI1,可调节对稻瘟病菌多种生理小种的抗性[29];通过全基因组关联研究,从抗病品种地谷中鉴定出的bsr-d1 被认为是一个新的稻瘟病广谱抗性基因[30]。一种编码单子叶植物特异性S结构域受体样激酶SDS2 的过表达能增强对稻瘟菌的抗性[31]。
-
1.2 稻瘟病广谱抗性的分子机制
-
如前言所述,经典的ETI抗性通常具有小种特异性,而PTI免疫多具有广谱性。水稻广谱抗病机制的研究主要涉及PTI和ETI信号的协调。研究发现,在PTI和ETI信号中,植物免疫反应的激发通常会引起一些共通的下游反应,如活性氧(Reactive Oxygen species, ROS)迸发、PR基因表达、抗毒素合成以及木质素增厚等[4]。例如,OsBBI1 的过表达促使水稻植物在细胞中积累高水平的H2O2,在细胞壁中积累高水平的酚类化合物,导致细胞壁变厚,从而调节对稻瘟病菌多种生理小种的抗性[29]; 受体样激酶SDS2,通过与两种受体样胞质激酶OsRLCK118 和OsRLCK176 相互作用诱导细胞程序性死亡,伴随着ROS爆发,进而增强对稻瘟菌的抗性[31]。 自1999 年,Kawasaki[32] 报道了水稻OsRac1 是激发ROS产生和细胞死亡的调节因子、Ono[33] 证明组成性激活OsRac1 能够提高水稻对稻瘟病和白叶枯病的抗性以后,围绕着这个有GTP酶活性的小分子GTP结合蛋白的研究逐渐揭开了水稻天然免疫的信息网络。一系列研究表明,OsRac1 是模式识别受体和抗性蛋白这两类免疫受体的下游关键信号开关,在R基因和DR基因介导的广谱抗病信号传递中起着重要调控作用。OsRac1 能够被R蛋白Pit与OsSPK1(一个鸟苷酸交换因子) 的结合所激活,进而启动免疫[34];在Pia和Pid3 介导的抗病应答中也发挥重要作用[35]。OsRac1 对DR基因介导的广谱抗性信号传导发挥着重要的调控作用, 它能与OsRAR1、RACK1、HSP90 和HSP70 等形成抗病复合体(Defensome),该复合体的重要调控原件OsRac1GEF,既可通过胞质结构域与OsFLS2(细菌鞭毛识别蛋白)互作,又可与OsCERK1(真菌几丁质识别蛋白)互作,说明OsRac1 与细菌和真菌病害诱导调控的免疫信号通路都有关联[36]。OsRac1 参与E3 泛素连接酶介导的免疫调控,SPL11 能促进SDS2 蛋白和一个小GTP酶激活蛋白SPIN6 的降解,是协调OsRac1 由活性态(GTP结合型)向无活性态(GDP结合型) 的一个开关[31,37]。因此,作为R和DR基因介导免疫的重要信号节点,OsRac1 可能是植物免疫信号传递的中心,操纵OsRac1 活性可能会获得具有广谱抗病性的水稻新种质。 近几年,转录因子介导的新型广谱抗病机制研究获得了较大突破。Bsr-d1 编码一个C2H2 型的锌指转录因子,可直接与两个过氧化物酶基因的启动子结合,激活其转录、减少H2O2 的积累,而MYB转录因子MYBS1 可以特异性结合到Bsr-d1 启动子并抑制其转录。全基因组关联分析结果表明, Bsr-d1 启动子区域一个从A到G的碱基自然变异产生了天然等位基因bsr-d1,使之具有与MYBS1 更高的亲和力,抑制了BSR-D1 的转录,降低了下游过氧化物酶基因的表达量,使得bsr-d1 植株中积累大量H2O2,使植株具有非小种特异性和持久抗性[30]。转录因子理想植物结构1(IPA1,也称为OsSPL14)是水稻理想株型建成的核心因子,最新研究表明,受到稻瘟病菌攻击时,IPA1 在S163 处的磷酸化改变了其DNA结合特异性,与WRKY45 的启动子结合,进而激活WRKY45 的转录,最终导致对多种稻瘟菌的免疫增强而当抗性信号激活后,IPA1 的磷酸化即迅速解除,继续行使其调控生长的功能,实现了单个基因对植物抗性和产量的协调[38]。NLR蛋白PigmR对水稻稻瘟病具有较强的抗性,通常强的抗性选择会导致病原菌优势群的快速变异,而丧失抗性的持久性。另一个NLR蛋白PigmS可通过与PigmR相互作用以平衡免疫,PigmS通过抑制PigmR-PigmR同源二聚化而非PigmR-PigmS异源二聚化来竞争性地减弱PigmR介导的抗性,降低PigmR对稻瘟病菌的选择压力, 从而使水稻持久保持广谱抗病性[22]。最近,发现具有RRM反式激活结构域的转录因子PIBP1 与PigmR相互作用,通过PigmR启动的PIBP1 核聚集而与防御基因OsWAK14 和OsPAL1 的启动子结合而激活免疫,触发稻瘟病抗性[39]。
-
1.3 白叶枯病广谱抗性资源的挖掘
-
水稻白叶枯病抗性基因的结构相对多样。目前已在水稻栽培品种、野生品种或突变群体中鉴定出约46 个抗白叶枯病基因,其中7 个显性和4 个隐性基因已被克隆或解析了分子机理[7,40]。这些基因编码多种类型的蛋白质,提示白叶枯病R基因介导的抗性具有多种机制。只有Xa1 编码的是经典NLR蛋白,Xa21 和Xa3/Xa26 编码质膜定位的富亮氨酸重复的受体样激酶(Leucine-Rich Repeat Receptor-Like Kinase, LRR-RLK),Xa4 编码细胞壁相关激酶(Wall-Associated Kinase, WAK), 编码转录因子的xa5,以及编码具有潜在转录因子功能的跨膜蛋白(Transmembrane Protein, TM)或质外体蛋白(apoplast protein)Xa10、Xa23、xa13、 xa25、xa41 和Xa27。其中,Xa21、 Xa23 和xa5 对大多数白叶枯病菌株表现出较高抗性,被公认为白叶枯病广谱抗性基因[4,7,41-43]。
-
1.4 白叶枯病广谱抗性的分子机制
-
白叶枯病抗性基因对Xoo的完全抗性是赖于白叶枯病菌的转录激活样效应子(transcription activator-like effectors,TALE)的转录激活,而转录激活发生在Xoo TALE与相应R基因的启动子相结合之时[41-45]。目前所有被检测的田间白叶枯病分离株中都存在avrXa23,迄今为止,Xa23 对测试的几乎所有天然白叶枯病菌株都表现很强的抗性[43]。xa5 因为编码基础转录因子 γ 亚基,具有广谱性,广泛应用于提高水稻对白叶枯病的抗性。 已揭示的分子机制是所有Xoo的毒性TALE与显性Xa5 而非隐性xa5 相互作用,导致毒性TALE在隐性xa5 背景下能有效激活感病基因的转录本,从而预防水稻白叶枯病[44-45]。此外,xa5 被认定为Xoc抗性的主效QTL[46],同样的,所有Xoc的毒性TALE都只与显性Xa5 互作,导致在含有xa5 的水稻品种中,Xoc的毒性TALE不能有效激活相应的感病基因,而使携带xa5 的水稻品种对Xoc表现出广谱抗性[45, 47]。因此,xa5 基因在育种中的利用越来越受到人们的重视[48]。 Xa21 和Xa3/Xa26 编码细胞质膜定位的LRR受体激酶,对全球大多数Xoo具有广谱和基础模式触发免疫[49]。Xa21 是第一个被克隆的水稻白叶枯病抗性基因,能特异性识别Xoo的第14 位酪氨酸(Y14)硫酸化的RAxX,从而触发强烈PTI免疫[50]。 Xa21 介导的广谱抗病信号网络已被广泛研究,几种Xa21 结合蛋白,包括ATP酶(XB24)、E3 泛素连接酶(XB3)、PP2C磷酸酶(XB25)、WRKY转录因子(XB10)、OsSERK2 和内质网伴侣蛋白, 在Xa21 触发的抵抗中起重要作用具有正或负调节模式的白叶枯病[4]。虽然,Xa3/Xa26 及其直向同源物也表现出对不同白叶枯病菌株的广谱抗性,受限于它们在白叶枯病中的致病相关分子模式至今尚未确定,相应的广谱抗性分子机制也有待研究。 同样,一些QTL和DR基因对白叶枯菌表现出广谱抗性。微效QTL基因GH3-2 编码吲哚-3-乙酸(IAA)-酰胺合成酶,通过抑制病原体诱导的IAA积累来防止水稻细胞壁疏松,触发广谱的基础抗性,抵抗细菌Xoo、Xoc和稻瘟菌的入侵[51]。 水稻GDSL脂肪酶OsGlip1 和OsGlip2 功能相近, 通过调节脂质稳态对水稻免疫产生负面影响,抑制OsGlip1 和OsGlip2 可增强对细菌Xoo和稻瘟菌的基础抗性[52]。水稻bsr-k1 编码具有RNA绑定功能的含三角状四肽重复(Tetratrico peptide Repeats, TPR)结构域的蛋白,BSR-K1 蛋白与OsPAL基因的RNA结合促进其消解,最终导致疾病易感性。 而在bsr-k1 突变体中,截短的bsr-k1 蛋白不能结合和消化OsPAL基因mRNA,OsPAL转录本积累可以大量提高木质素的合成与积累,增强PR基因的表达,具有广谱抗细菌Xoo和稻瘟菌的特性[15,53]。 WRKY45 通过介导水杨酸信号在苯并噻二唑诱导的疾病抗性中发挥关键作用,过表达WRKY45 增强了对细菌病原体Xoo、Xoc以及真菌病原的抗性, 但过量表达WRKY45 的水稻植株易受纹枯菌的侵染,限制了其在遗传改良中的应用[54-55]。 一些DR基因功能激活或缺失的植物会因免疫的持续激活而表现出细胞死亡表型,又称为类病斑突变体(Lesion Mimic Mutant, lmm),因时常伴有持续的免疫激活和细胞死亡而使作物对不同病原物抗性均有不同程度提升,水稻中spl11、spl28、 Lrd6-6、oscul3a、ebr1 等同时表现出对白叶枯病和稻瘟病的广谱抗性[56]。
-
1.5 其他水稻病害的广谱抗性研究
-
除抗稻瘟病和白叶枯病的R基因外,人们目前尚未发现抗其他水稻病害的R基因,只是鉴定出了许多抗其他水稻病害的QTL,其中一些QTL已被分离并对其分子机理进行了研究。这些QTL基因对水稻纹枯病、水稻稻曲病、水稻条纹叶枯病、水稻黑条矮缩病或其他水稻病害表现中等抗性。目前已检测到50 多个水稻纹枯病抗性QTL,其中,qSB-9TQ和qSB-11LE已初步定位;人们在除了第7 和第9 染色体外的至少10 条水稻染色体上可检测到抗稻曲病QTLs,但未见进一步定位[7]。目前至少已鉴定出6 个抗条纹叶枯病主效QTLs,在这些定位的QTL中,只有抗纹枯病的qSTV11KAS(名为STV11)被克隆,其编码一种磺基转移酶,能够催化水杨酸转化为磺化水杨酸,且大量的籼-籼稻品种而非粳-粳稻品种含有功能性STV11,这与大多数粳-粳稻品种更易感染条纹病毒的发现一致[57]。除STV11 以外, 其他QTLs均未被克隆,抗病机理研究报道亦寥寥无几。目前,对这些病害的研究更多集中在病原菌的分离鉴定、菌株的致病能力分析以及不同水稻对有毒菌株的抗性分析等[58-61]。
-
2 水稻广谱抗病研究的机遇和挑战
-
我国是人口大国,解决好粮食安全生产问题一直是我国经济和农业的关键问题。根据《全国农业可持续发展规划(2015—2030 年)》,农业部出台了围绕创新、开放、共享绿色发展理念的行动方案,绿色生产成为我国未来农业发展趋势。为实现作物病害的绿色生态调控、保障农业绿色可持续发展,国家在植物保护、病害绿色可持续防控上继续加大资助力度,以国家自然科学基金委员会为例, 2019 年在植物保护学科领域资助各类项目360 余项,金额达1.7 亿元[15]。 政策引导和资金投入推动了我国作物广谱抗病研究的发展,国际、国内合作搭建了优良先进的研究平台,引进技术结合自身创新,我国在植物抗病机理研究上取得了瞩目成就,诸如首次解析了植物抗病小体(Resistosome)的蛋白复合体结构及其介导的免疫激活新机制、抗病与产量平衡、水稻对病毒抗性调控等[14-15]。以基因编辑—间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeat, CRISPR)为代表的基因改造技术在水稻新资源创制中的重要性越来越显著。对pi21 基因或同时对Pita、Pi2 和ERF922 三个基因进行编辑,都能获得对稻瘟病抗性显著提高的水稻新种质;对水稻Xa13 以及SWEET11/13/14 等基因进行编辑,创制了白叶枯抗性增强的水稻[62-63]。 基于广谱抗病机理的研究,人们发现多数QTL和DR基因表现出广谱抗性且不影响植株生长或产量,在水稻品种改良中具有潜在利用价值。2018 年,Ranf尝试将EFR或XA21 等PRRs转化到感病品种中,结果受体的抗病性、甚至是广谱抗性就能提高,说明PRRs下游的调控模块具有较高的保守性。基于PRRs下游调控模块的保守性,将模式植物中鉴定到的PRRs转化到作物中,可望达到提高作物广谱抗病性的目标[64]。田间试验表明bsr-d1 和bsr-k1 基因不影响关键农艺性状或产量,成为水稻育种的潜在候选者[15]。 作物广谱抗病研究既面临大好机遇,也面临严峻挑战。首先,广谱抗病新基因的发掘效率和准确性还远远不能满足需求,亟需新方法和技术的研发和利用;其次,病原田间变异导致作物抗性的频繁丧失,如何利用植物免疫机理研究的理论指导持久抗性基因的挖掘、如何结合抗性基因和广谱抗性机理达到最佳防控效果等问题尚未解决; 第三,广谱抗性的持久性问题、抗性—产量—品质的平衡问题也还制约着抗病基因的育种应用。此外,虽然医学、结构生物学、泛组学等新的研究思路、方法和技术手段的层出不穷,但科技工作者是否能够融会贯通、革新的运用各种科技力量应用于作物广谱抗性改良中也是一大挑战。
-
3 结语与展望
-
作物重大病害的发生规律、病原物致害机理以及病害发生、发展过程中复杂的互作机理和植物响应侵害的分子免疫机制都是未来的重点研究方向[1]。针对作物广谱抗病研究面临的挑战,我们既要有强烈的危机感,又要有信心积极应对。首先是进一步深化对广谱抗病作物种质资源的研究,挖掘新类型的抗病基因;采用多种新方法结合分析的手段快速鉴定及克隆新型广谱抗病基因,并全面解析其调控机理;并利用先进、高效的方法获得广谱抗病性增强的新材料,改良和提高作物抗病性。具体包括:(1)利用高通量的基因组学、转录组学以及泛基因组学分析的方法,通过全面解析植物的抗性和病原菌的致害机制的途径,快速鉴定新型广谱抗病基因、易感基因、新的MAMPs以及新型免疫受体;(2)通过结构生物学分析解析免疫受体免疫激发、强化和维持的调控机制;(3)解析作物—病原—环境互作不同生物间信息流、精细调控作物免疫及与病原生物互作的机制;(4)解析易感基因或小RNA跨界诱导病原靶基因沉默的普遍作用机制,利用基因编辑、小RNA诱导沉默等负向调控的策略设计抗病新途径;(5)解析作物免疫与其他农艺性状的协同调控调控机制;(6)基于以上研究,人工重构理想的作物免疫系统。 在深入理解广谱抗病机理的基础上,注重新鉴定的广谱抗病基因在育种实践中的应用和评价,合理利用兼顾抗性、产量和品质的基因,做到在提高抗性的同时既要兼顾与产量和品质间的平衡,也要考虑与其他抗逆性等生态适应性的关系。只有全面提升该领域的研究,才有利于满足粮食安全、生态安全的重大需求。
-
(责任编辑 杨贤智)
-
朱小源,博士,三级研究员。国家水稻产业技术体系岗位科学家,农业农村部水稻稻瘟病防控指导专家, 广东省农业科学院学科带头人。 主要从事病害预警及防控技术、 水稻抗病基因挖掘及应用研究。承担国家转基因重大专项、国家自然科学基金、国家重大研发计划、国家公益性行业(农业)科研专项等20 多项。鉴定克隆了具有重大应用价值的新型稻瘟病广谱抗性基因Pi50,挖掘鉴定了新的白叶枯病抗性基因xa34 和xa46,建立了广谱抗性育种的基因应用技术,挖掘的抗性基因资源被省内外育种团队应用于抗病育种、选育出一大批抗病品种,在全国累计种植面积达480多万公顷次; 在国内外学术刊物上发表论文80 多篇;获国家和省部级科研成果奖励8 项,其中国家科技进步二等奖1 项、省部级科技进步一等奖3 项。选育水稻抗病品种10 个、抗病不育系2 个,获国家发明专利4 项。
-
参考文献
-
[1]
王晓杰,甘鹏飞,汤春蕾,康振生.植物抗病性与病害绿色防控:主要科学问题及未来研究方向[J].中国科学基金,2020,34(4):381-392.DOI:10.16262/j.cnki.1000-8217.2020.04.003.[百度学术]WANG X J,GAN P F,TANG C L,KANG Z S.Plant disease resistance and disease green prevention and control:major scientific issues and future research directions[J].Bulletin of National Natural Science Foundation of China,2020,34(4):381-392.DOI:10.16262/j.cnki.1000-8217.2020.04.003.[百度学术] -
[2]
ZHANG J,COAKER G,ZHOU J M,DONG X N.Plant immune mechanisms:from reductionistic to holistic points of view[J].Molecular Plant,2020.DOI:10.1016/j.molp.2020.09.007.[百度学术] -
[3]
CHOI H W,KLESSIG D F.DAMPs,MAMPs,and NAMPs in plant innate immunity[J].BMC Plant Biology,2016,16,232.DOI:10.1186/s12870-016-0921-2.[百度学术] -
[4]
LIU W D,LIU J L,TRIPLETT L,LEACH J E,WANG G L.Novel insights into rice innate immunity against bacterial and fungal pathogens[J].Annual Review of Phytopathology,2014,52(1):213-241.DOI:10.1146/annurev-phyto-102313-045926.[百度学术] -
[5]
LIANG X,ZHOU J M.Receptor-Like Cytoplasmic Kinases:central players in plant receptor Kinase-Mediated Signaling[J].Annual Review of Plant Biology,2018,69:267-299.DOI:10.1146/annurevarplant-042817-040540.[百度学术] -
[6]
TIAN W,HOU C C,REN Z J,WANG C,ZHAO F G,DAHLBECK D,HU S P,ZHANG L Y,NIU Q,LI L G,STASKAWICZ B J,LUAN S.A calmodulin-gated calcium channel links pathogen patterns to plant immunity[J].Nature,2019,572:131-135.DOI:10.1038/s41586-019-1413-y.[百度学术] -
[7]
ZHANG M J,WANG S P,YUAN M.An update on molecular mechanism of disease resistance genes and their application for genetic improvement of rice[J].Molecular Breeding,2019,39:154.DOI:10.1007/s11032-019-1056-6.[百度学术] -
[8]
LI W T,CHERN M S,YIN J J,WANG J,CHEN X W.Recent advances in broad-spectrum resistance to the rice blast disease[J].Current opinion in plant biology,2019,50:114-120.DOI:10.1016/j.pbi.2019.03.015.[百度学术] -
[9]
KE Y G,DENG H Q,WANG S P.Advances in understanding broadspectrum resistance to pathogens in rice[J].The Plant Journal,2017,90:738–748.DOI:10.1111/tpj.13438.[百度学术] -
[10]
DEAN R,VAN KAN J A,PRETORIUS Z A,HAMMOND-KOSACK K E,DI PIETRO A,SPANU P D,RUDD J J,DICKMAN M,KAHMANN R,ELLIS J,FOSTER G D.The top 10 fungal pathogens in molecular plant pathology[J].Molecular Plant Pathology,2012,13:414–430.DOI:10.1111/j.1364-3703.2011.00783.x.[百度学术] -
[11]
NALLEY L,TSIBOE F,DURAND-MOART A,SHEW A,THOMA G.Economic and environmental impact of rice blast pathogen(Magnaporthe oryzae)alleviation in the United States[J].PLOS ONE,2016,11(12):e0167295.DOI:10.1371/journal.pone.0167295.[百度学术] -
[12]
MANSFIELD J,GENIN S,MAGORI S,CITOVSKY V,SRIARIYANUM M,RONALD P,DOW M,VERDIER V,BEER S V,MACHADO M A,TOTH I,SALMOND G,FOSTER G D.Top 10 plant pathogenic bacteria in molecular plant pathology[J].Molecular Plant Pathology,2012,13:614-629.DOI:10.1111/j.1364-3703.2012.00804.x.[百度学术] -
[13]
Flor H.H.Host-parasite interaction in flax rust-its genetics and other implications[J].Phytopathology,1955,45:680–685.[百度学术] -
[14]
张杰,董莎萌,王伟,赵建华,陈学伟,郭惠珊,何光存,何祖华,康振生,李毅,彭友良,王国梁,周雪平,王源超,周俭民.植物免疫研究与抗病虫绿色防控:进展、机遇与挑战[J].中国科学:生命科学,2019,49(11):1479-1507.DOI:10.1360/SSV-2019-0176.[百度学术]ZHANG J,DONG S M,WANG W,ZHAO J H,CHEN X W,GUO H S,HE G C,HE Z H,KANG Z S,LI Y,PENG Y L,WANG G L,ZHOU X P,WANG Y C,ZHOU J M.Plant immunity and sustainable control of pests in China:Advances,opportunities and challenges[J].Scientia Sinica Vitae,2019,49:1479–1507.DOI:10.1360/SSV-2019-0176.[百度学术] -
[15]
朱孝波,李伟滔,贺闽,王静,于振良,陈学伟.作物广谱抗病研究现状与关键科学问题[J].中国科学基金,2020,34(4):401-410.DOI:10.16262/j.cnki.1000-8217.2020.04.005.[百度学术]ZHU X B,LI W T,HE M,WANG J,YU Z L,CHEN X W.Broad spectrum resistance in main crops:recent advances and future direction[J].Bulletin of National Natural Science Foundation of China,2020,34(4):401-410.DOI:10.16262/j.cnki.1000-8217.2020.04.005.[百度学术] -
[16]
CHEN X,SHANG J,CHEN D,LEI C,ZOUY,ZHAIW,LIUG,XU J,LING Z,CAO G,MA B,WANG Y,ZHAO X,LI S,ZHU L.A β-lectin receptor kinase gene conferring rice blast resistance[J].The Plant Journal,2006,46:794–804.DOI:10.1111/j.1365-313X.2006.02739.x.[百度学术] -
[17]
ZHAO H,WANG X,JIA Y,MINKENBERG B,WHEATLEY M,FAN J,JIA MH,FAMOSO A,EDWARDS JD,WAMISHE Y,VALENT B,WANG GL,YANG Y.The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J].Nature Communication,2018,9:2039.DOI:10.1038/s41467-018-04369-4.[百度学术] -
[18]
ZHU X Y,CHEN S,YANG J Y,ZHOU S C,ZENG L X,Han J L,Su J,Wang L,Pan Q H.The identification of Pi50(t),a new member of the rice blast resistance Pi2/Pi9 multigene family[J].Theoretical and Applied Genetics,2012,124:1295–1304.DOI:10.1007/s00122-012-1787-9.[百度学术] -
[19]
QU S,LIU G,ZHOU B,BELLIZZI M,ZENG L,DAI L,HAN B,WANG G L.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multiple family in rice[J].Genetics,2006,172:1901–1914.DOI:10.1534/genetics.105.044891.[百度学术] -
[20]
LEE S K,SONG M Y,SEO Y S,KIM H K,KO S,CAO P J,SUH J P,YI G,ROH J H,LEE S,AN G,HAHN T R,WANG G L,RONALD P,JEON J S.Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-bindingleucine-rich repeat genes[J].Genetics,2009,181:1627–1638.DOI:10.1534/genetics.108.099226.[百度学术] -
[21]
SU J,WANG W J,HAN J L,CHEN S,WANG C Y,ZENG L X,FENG A Q,YANG J Y,ZHOU B,ZHU X Y.Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus[J].Theoretical and Applied Genetics,2015,128(11):2213–2225.DOI:10.1007/s00122-015-2579-9.[百度学术] -
[22]
DENG Y,ZHAI K,XIE Z,YANG D,ZHU X,LIU J,WANG X,QIN P,YANG Y,ZHANG G,LI Q,ZHANG J,WU S,MILAZZO J,MAO B,WANG E,XIE H,THARREAU D,HE Z.Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance [J].Science,2017,355:962–965.DOI:10.1126/science.aai8898.[百度学术] -
[23]
HUA L X,WU J,CHEN C,WU W,HE X,LIN F,WANG L,ASHIKAWA I,MATSUMOTO T,WANG L,PAN Q H.The isolation of Pi1,an allele at the Pik locus which confers broad spectrum resistance to rice blast[J].Theoretical and Applied Genetics,2012,125:1047–1055.DOI:10.1007/s00122-012-1894-7.[百度学术] -
[24]
WANG Z X,YANO M,YAMANOUCHI U,IWAMOTO M,MONNA L,HAYASAKA H,KATAYOSE Y,SASAKI T.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J].The Plant Journal,1999,19:55–64.[百度学术] -
[25]
CHAIPANYA C,TELEBANCO-YANORIA M J,QUIME B,LONGYA A,KORINSAK S,KORINSAK S,TOOJINDA T,VANAVICHIT A,JANTASURIYARAT C,ZHOU B.Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by tworesistance genes against rice blast[J].Rice,2017,10(1):18.DOI:10.1186/s12284-017-0159-0.[百度学术] -
[26]
LIU Y,LIU B,ZHU X,YANG J,BORDEOS A,WANG G,LEACH JE,LEUNG H.Fine-mapping and molecular marker development for Pi56(t),a NBS-LRR gene conferring broad spectrum resistance to Magnaporthe oryzae in rice[J].Theoretical and Applied Genetics,2013,126:985–998.DOI:10.1007/s00122-012-2031-3[百度学术] -
[27]
FUKUOKA S,SAKA N,KOGA H,ONO K,SHIMIZU T,EBANA K,HAYASHI N,TAKAHASHI A,HIROCHIKA H,OKUNO K,YANO M.Loss of function of a proline-containing protein confers durable disease resistance in rice[J].Science,2009,325:998–1001.DOI:10.1126/science.1175550.[百度学术] -
[28]
ZHAO H,WANG X,JIA Y,MINKENBERG B,WHEATLEY M,FAN J,JIA MH,FAMOSO A,EDWARDS JD,WAMISHE Y,VALENT B,WANG GL,YANG Y.The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J].Nature Communication,2018,9:2039.DOI:10.1038/s41467-018-04369-4.[百度学术] -
[29]
LI W,ZHONG S,LI G,LI Q,MAO B,DENG Y,ZHANG H,ZENG L,SONG F,HE Z.Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence[J].Cell Research,2011,21:835– 848.DOI:10.1038/cr.2011.4.[百度学术] -
[30]
LI W,ZHU Z,CHERN M,YIN J,YANG C,RAN L,CHENG M,HE M,WANG K,WANG J,ZHOU X,ZHU X,CHEN Z,WANG J,ZHAO W,MA B,QIN P,CHEN W,WANG Y,LIU J,WANG W,WU X,LI P,WANG J,ZHU L,LI S,CHEN X.A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J].Cell,2017,170:114–126.DOI:10.1016/j.cell.2017.06.008.[百度学术] -
[31]
FAN J,BAI P,NING Y,WANG J,SHI X,XIONG Y,ZHANG K,HE F,ZHANG C,WANG R,MENG X,ZHOU J,WANG M,SHIRSEKAR G,PARK C H,BELLIZZI M,LIU W,JEON J S,XIA Y,SHAN L,WANG G L.The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice[J].Cell Host Microbe,2018,23:498–510.DOI:10.1016/j.chom.2018.03.003.[百度学术] -
[32]
KAWASAKI T,HENMI K,ONO E,HATAKEYAMA S,IWANO M,SATOH H,SHIMAMOTO K.The small GTP-binding protein Rac is a regulator of cell death in plants[J].Proceedings of the National Academy of Sciences,1999,96(19):10922-10926.DOI:10.1073/pnas.96.19.10922.[百度学术] -
[33]
ONO E,WONG H L,KAWASAKI T,HASEGAWA M,KODAMA O,SHIMAMOTO K.Essential role of the small GTPase Rac in disease resistance of rice[J].Proceedings of the National Academy of Sciences,2001,98(2):759-764.DOI:10.1073/pnas.021273498.[百度学术] -
[34]
KAWANO Y,AKAMATSU A,HAYASHI K,HOUSEN Y,OKUDA J,YAO A,NAKASHIMA A,TAKAHASHI H,YOSHIDA H,WONG H L,KAWASAKI T,SHIMAMOTO K.Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity[J].Cell Host and Microbe,2010,7(5):362-375.DOI:10.1016/j.chom.2010.04.010.[百度学术] -
[35]
ZHOU Z Z,PANG Z Q,ZHAO S L,ZHANG L L,LV Q M,YIN D D,LI D Y,LIU X,ZHAO X F,LI X B,WANG W M,ZHU L H.Importance of OsRac1 and RAI1 in signalling of nucleotide-binding siteleucinerich repeat protein-mediated resistance to rice blast disease[J].New Phytologist,2019,223(2):828-838.DOI:10.1111/nph.15816.[百度学术] -
[36]
AKAMATSU A,WONG H L,FUJIWARA M,OKUDA J,NISHIDE K,UNO K,IMAI K,UMEMURA K,KAWASAKI T,KAWANO Y,SHIMAMOTO K.An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J].Cell Host and Microbe,2013,13(4):465-476.DOI:10.1016/j.chom.2013.03.007.[百度学术] -
[37]
LIU J L,PARK C H,HE F,NAGANO M,WANG M,BELLIZZI M,ZHANG K,ZENG X S,LIU W D,NING Y S,KAWANO Y,WANG G L.The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J].PLoS Pathogens,2015,11(2):e1004629.DOI:10.1371/journal.ppat.1004629.[百度学术] -
[38]
WANG J,ZHOU L,SHI H,CHERN M,YU H,YI H,HE M,YIN J,ZHU X,LI Y,LIW,LIU J,WANG J,CHEN X,QING H,WANG Y,LIU G,WANG W,LI P,WU X,ZHU L,ZHOU JM,RONALD PC,LI S,LI J,CHEN X.A single transcription factor promotes both yield and immunity in rice[J].Science,2018,361:1026–1028.DOI:10.1126/science.aat7675.[百度学术] -
[39]
ZHAI K,DENG Y,LIANG D,TANG J,LIU J,YAN B,YIN X,LIN H,CHEN F,YANG D,XIE Z,LIU J Y,LI Q,ZHANG L,HE Z.RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice[J].Molecular Cell,2019,74:996–1009.DOI:10.1016/j.molcel.2019.03.013.[百度学术] -
[40]
CHEN S,WANG C Y,YANG J Y,CHEN B,WANG W J,SU J,FENG A Q,ZENG L X,ZHU X Y.Identification of the novel bacterial blight resistance gene Xa46(t)by mapping and expression analysis of the rice mutant H120[J].Scientific Reports,2020,10(1):12642.DOI:10.1038/s41598-020-69639-y.[百度学术] -
[41]
SONG W Y,WANG G L,CHEN L L,KIM H S,PI LY,HOLSTEN T,GARDNER J,WANG B,ZHAI W X,ZHU L H,FAUQUET C,RONALD P.A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21[J].Science,1995,270:1804–1806.10.1126/science.270.5243.1804.[百度学术] -
[42]
TIAN D S,WANG J,ZENG X,GU K,QIU C,YANG X,ZHOU Z,GOH M,LUO Y,MURATA-HORI M,WHITE F F,YIN Z S.The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum[J].The Plant Cell,2014,26:497–515.DOI:10.1105/tpc.113.119255[百度学术] -
[43]
WANG C,ZHANG X,FAN Y,GAO Y,ZHU Q,ZHENG C,QIN T,LI Y,CHE J,ZHANG M,YANG B,LIU Y,ZHAO K.XA23 is an executor R protein and confers broad-spectrum disease resistance in rice[J].Molecular Plant,2015,8:290–302.DOI:10.1016/j.molp.2014.10.010[百度学术] -
[44]
HUANG S,ANTONY G,LI T,LIU B,OBASA K,YANG B,WHITE F F.The broadly effective recessive resistance gene xa5 of rice is a virulence effector-dependent quantitative trait for bacterial blight[J].The Plant Journal,2016,86:186–194.DOI:10.1111/tpj.13164.[百度学术] -
[45]
HUANG R Y,HUI S G,ZHANG M,LI P,XIAO J H,LI X H,YUAN M,WANG S P.A conserved basal transcription factor is required for the function of diverse TAL effectors in multiple plant hosts[J].Frontiers in Plant Science,2017,8:1919.DOI:10.3389/fpls.2017.01919.[百度学术] -
[46]
XIE X,CHEN Z,CAO J,GUAN H,LIN D,LI C,LAN T,DUAN Y,MAO D,WU W.Toward the positional cloning of qBlsr5a,a QTL underlying resistance to bacterial leaf streak,using overlapping subCSSLs in rice[J].PLOS One,2014,9:e95751.DOI:10.1371/journal.pone.0095751.[百度学术] -
[47]
YUAN M,KE Y,HUANG R,MA L,YANG Z,CHU Z,XIAO J,LI X,WANG S.A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria[J].Elife,2016,5:e19605.DOI:10.7554/eLife.19605.[百度学术] -
[48]
成太辉,陈深,杨健源,朱小源,伍圣远,洪启金,曾列先.水稻抗白叶枯病V型菌xa5基因利用现状及前景[J].广东农业科学,2020,47(1):92-97.DOI:10.16768/j.issn.1004-874X.2020.01.013.[百度学术]CHENG T H,CHEN S,YANG J Y,ZHU X Y,WU S Y,HONG Q J,ZENG L X.Utilization situation and prospect of gene xa5 against pathotype Ⅴ of rice bacterial blight[J].Guangdong Agricultural Sciences,2020,47(1):92-97.DOI:10.16768/j.issn.1004-874X.2020.01.013.[百度学术] -
[49]
CHEN X,ZUO S,SCHWESSINGER B,CHERN M,CANLAS PE,RUAN D,ZHOU X,WANG J,DAUDI A,PETZOLD C J,HEAZLEWOOD J L,RONALD P C.An XA21-associated kinase(OsSERK2)regulates immunitymediated by the XA21 and XA3 immune receptors[J].Molecular Plant,2014,7:874–892.DOI:10.1093/mp/ssu003.[百度学术] -
[50]
PRUITT R N,SCHWESSINGER B,JOE A,THOMAS N,LIU F,ALBERT M,ROBINSON M R,CHAN L F G,LUU D D,CHEN H,BAHAR O,DAUDI A,VLEESSCHAUWER D D,CADDELL D,ZHANG W,ZHAO X,LI X,HEAZLEWOOD J L,RUAN D,MAJUMDER D,CHERN M,KALBACHER H,MIDHA S,PATIL P B,SONTI R V,PETZOLD C J,LIU C C,BRODBELT J S,FELIX G,RONALD P C.The rice immune receptor XA21 recognizes a tyrosinesulfated protein from a Gramnegative bacterium[J].Science Advances,2015,1:e1500245.DOI:10.1126/sciadv.1500245.[百度学术] -
[51]
FU J,LIU H,LI Y,YU H,LI X,XIAO J,WANG S.Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice[J].Plant Physiology,2011,155:589– 602.DOI:10.1104/pp.110.163774.[百度学术] -
[52]
GAO M,YIN X,YANG W,LAM SM,TONG X,LIU J,WANG X,LI Q,SHUI G,HE Z.GDSL lipases modulate immunity through lipid homeostasis in rice[J].PLOS Pathogens,2017,13:e1006724.DOI:10.1371/journal.ppat.1006724.[百度学术] -
[53]
ZHOU X,LIAO H,CHERN M,YIN J,CHEN Y,WANG J,ZHU X,CHEN Z,YUAN C,ZHAO W,WANG J,LI W,HE M,MA B,WANG J,QIN P,CHEN W,WANG Y,LIU J,QIAN Y,WANG W,WU X,LI P,ZHU L,LI S,RONALD P C,CHEN X.Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J].Proc Natl Acad Sci USA,2018,115:3174–3179.DOI:10.1073/pnas.1705927115.[百度学术] -
[54]
TAO Z,LIU H,QIU D,ZHOU Y,LI X,XU C,WANG S.A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J].Plant Physiol,2009,151:936–948.DOI:10.1104/pp.109.145623.[百度学术] -
[55]
SHIMONO M,KOGA H,AKAGI A,HAYASHI N,GOTO S,SAWADA M,KURIHARA T,MATSUSHITA A,SUGANO S,JIANG CJ,KAKU H,INOUE H,TAKATSUJI H.Rice WRKY45 plays important roles in fungal and bacterial disease resistance[J].Molecular Plant Pathology,2012,13:83–94.DOI:10.1111/j.1364-3703.2011.00732.x.[百度学术] -
[56]
LORRAIN S,VAILLEAU F,BALAGUE C,ROBY D.Lesion mimic mutants:keys for deciphering cell death and defense pathways in plants [J].Trends in Plant Science,2003,8(6):263– 271.DOI:10.1016/S1360-1385(03)00108-0.[百度学术] -
[57]
WANG Q,LIU Y,HE J,ZHENG X,HU J,LIU Y,DAI H,ZHANG Y,WANG B,WU W,GAO H,ZHANG Y,TAO X,DENG H,YUAN D,JIANG L,ZHANG X,GUO X,CHENG X,WU C,WANG H,YUAN L,WAN J.STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus[J].Nature Communications,2014,5:4768.DOI:10.1038/ncomms5768.[百度学术] -
[58]
冯爱卿,汪文娟,曾列先,陈深,杨健源,苏菁,汪聪颖,朱小源.一种引致水稻稻叶褐条斑的病原鉴定初报[J].广东农业科学,2013,40(12):78-85.DOI:10.16768/j.issn.1004-874x.2013.12.034.[百度学术]FENG A Q,WANG W J,ZENG L X,CHEN S,YANG J Y,SU J,WANG C Y,ZHU X Y.The preliminary report of a fungus pathogen causing the rice brown streak leaf spot[J].Guangdong Agricultural Sciences,2013,40(12):78-85.DOI:10.16768/j.issn.1004-874x.2013.12.034.[百度学术] -
[59]
冯爱卿,杨健源,曾列先,陈深,苏菁,李落叶,李建雄,朱小源.稻曲病菌培养特性及致病力研究[J].广东农业科学,2014,41(19):60-64.DOI:10.16768/j.issn.1004-874x.2014.19.021.[百度学术]FENG A Q,YANG J Y,ZENG L X,CHEN S,SU J,LI L Y,Li J X,ZHU X Y.Culture characteristics and pathogenicity of rice false smut disease(Ustilaginoidea virens)[J].Guangdong Agricultural Sciences,2014,41(19):60-64.DOI:10.16768/j.issn.1004-874x.2014.19.021.[百度学术] -
[60]
冯爱卿,汪聪颖,汪文娟,陈尉芹,苏菁,杨健源,陈深,朱小源.广东水稻细菌性条斑病菌致病性分化研究[J].广东农业科学,2018,45(9):84-89.DOI:10.16768/j.issn.1004-874X.2018.09.014.[百度学术]FENG A Q,WANG C Y,WANG W J,CHEN W Q,SU J,YANG J Y,CHEN S,ZHU X Y.Study on the pathogenicity diversity of Xanthomonas oryzae pv.oryzicola from Guangdong province [J].Guangdong Agricultural Sciences,2018,45(9):84-89.DOI:10.16768/j.issn.1004-874X.2018.09.014.[百度学术] -
[61]
冯爱卿,黄显良,江先芽,陈深,伍尚信,黄日亮,曾列先,朱小源.水稻品种(组合)对稻黑孢霉菌的抗性评价[J].广东农业科学,2015,42(16):51-54.DOI:10.16768/j.issn.1004-874x.2015.16.013.[百度学术]FENG A Q,HUANG X L,JIANG X Y,CHEN S,WU S X,HUANG R L,ZENG L X,ZHU X Y.Resistance evaluation of rice varieties against Nigrospora oryzae(Berk.et Br.)Petch [J].Guangdong Agricultural Sciences,2015,42(16):51-54.DOI:10.16768/j.issn.1004-874x.2015.16.013.[百度学术] -
[62]
徐鹏,王宏,涂燃冉,刘群恩,吴玮勋,傅秀民,曹立勇,沈希宏.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J]. 中国水稻科学,2019,33(4):313-322.DOI:10.16819/j.1001-7216.2019.9043.[百度学术]XU P,WANG H,TU R R,LIU Q E,WU W X,FU X M,CAO L Y,SHEN X H.Orientation improvement of blast resistance in rice via CRISPR/Cas9 system[J].Chinese Journal Rice Science,2019,33(4):313-322.DOI:10.16819/j.1001-7216.2019.9043.[百度学术] -
[63]
AHMAD S,WEI X,SHENG Z H,HU P S,TANG S Q.CRISPR/Cas9 for development of disease resistance in plants:recent progress,limitations and future prospects[J].Briefings in Functional Genomics,2020,19(1):26-39.DOI:10.1093/bfgp/elz041.[百度学术] -
[64]
RANF S.Pattern recognition receptors-versatile genetic tools for engineering broad-spectrum disease resistance in crops[J].Agronomy,2018,8(8):134.DOI:10.3390/agronomy8080134.[百度学术]
-
摘要
由病害造成的粮食作物产量损失严重制约了全球粮食安全,培育抗病品种是公认的应对病害最经济、有效的方法,挖掘抗病基因、阐明广谱抗病机理是水稻广谱抗病资源高效利用以及寻找病害防控新途径基础。近20年来,植物免疫机理取得了系列重大进展,主要粮食作物广谱抗病研究也取得了显著成效,部分抗性基因的分子作用机制已被揭示。回顾和综述了水稻广谱抗病研究的主要进展(包括已克隆的主要广谱抗病基因,广谱抗性分子机制),分析了该领域研究面临的问题、机遇与挑战,并对广谱抗病研究的发展及其在水稻生产上应用进行展望。
Abstract
Yield loss caused by crop diseases seriously restricts global food security. Breeding disease-resistant varieties with resistant(R) gene is acknowledged as the most economical and effective way to control diseases. Therefore, exploring broad-spectrum resistant(BSR) genes to pathogens and clarifying the underlying mechanism are the basis for effective utilization of BSR resources and finding the new approaches for disease control. In the past 20 years, significant progress has also been made in plant immune mechanism and remarkable achievements have been made in researches on broad-spectrum disease resistance of major grain crops, and the potential molecular mechanisms of some BSR have been revealed. Here, the advances of broad-spectrum disease resistance in rice(including the representative cloned BSR genes and their molecular mechanisms) were reviewed. In addition, the problems, opportunities and challenges encountered by BSR were analyzed, and the development of BSR research and its application in rice production were prospected.
Keywords
rice ; disease ; broad-spectrum resistance ; molecular mechanism