-
水稻是我国超过60%人口的主粮,对我国粮食安全具有举足轻重的作用。我国有14 亿人口, 为世界之最。人口在不断增加,可耕地面积却逐渐减少,加上全球气候变化的影响,要大幅度提高水稻单位面积产量才能确保我国的粮食安全。另外, 随着我国工业和经济的高速发展,人们对水稻品质、 营养、安全以及生态环境提出了更高的要求。研究表明,水稻的产量、品质、抗逆、营养等重要性状为多基因控制的复杂性状,以表型鉴定和选择为基础的水稻常规育种方法很难进行有效育种。只有在分子水平上深入了解这些复杂性状的分子遗传基础,并开展高效准确的分子育种,水稻高产、优质、 抗性育种才能取得突破。近20 多年来,随着分子标记技术的发展、特别是基因组测序技术、基因芯片技术、SNP检测技术等高效的基因组技术的发展, 在水稻等主要作物重要性状相关基因的鉴定已取得了显著成绩,分子标记辅助选择和转基因育种也取得了令人鼓舞的成果[1-6]。这些研究结果进一步证明水稻分子育种是实现水稻育种第三次突破和确保我国粮食安全的根本途径。为提升广东水稻育种的技术水平,为广东粮食安全提供强有力的技术支撑, 1992 年广东省农业科学院水稻研究所(简称水稻所) 申请获得了广东省第一批、农业第一个广东省重点实验室:广东省水稻细胞工程重点实验室(后更名为广东省水稻育种新技术重点实验室),以省重点实验室为依托,水稻所成立了以博士、硕士等青年科技骨干组成的研究小组,开展水稻生物技术应用研究。2007 年专门成立了水稻分子育种研究室。 针对水稻育种中存在的重大关键问题,开展相关基因的标记定位、克隆和分子育种研究。20 多年来, 水稻所紧跟世界生物技术发展前沿,充分利用丰富多样的水稻种质资源和常规育种的优势,在水稻重要性状相关基因的鉴定方面取得显著成绩,水稻分子育种初见成效。本文总结了1992 年以来水稻所水稻分子育种的主要进展。
-
1 建立条件优良的水稻分子育种技术平台
-
1992 年水稻所申请获得了广东省重点实验室:广东省水稻细胞工程重点实验室(后更名为广东省水稻育种新技术重点实验室),成为广东省第一批4 个省重点实验室之一。随后,又申请获得了国家水稻改良广州分中心,仪器设备条件得到了进一步的补充和完善。并逐步建立了高效的分子标记技术、 全基因组选择技术、遗传转化技术、基因编辑技术、 全基因组关联分析技术和生物信息学等高效的基因组技术和平台。1990 年代初与国际水稻研究所合作开展水稻分子标记技术应用研究,是国内最早开展水稻分子标记技术应用研究的单位之一。利用这些技术平台对水稻一些重要复杂性状,如稻瘟病持久抗性、水稻耐冷性等进行了系统的分子遗传分析, 标记鉴定出超过300 个QTL,对超过20 个基因进行了克隆和功能研究,通过分子标记辅助选择与常规育种技术结合育成超过60 个通过审定的水稻优良品种(品系),推广面积超过40 万hm2,是国内分子育种成效最显著的单位之一。
-
2 标记鉴定出一批水稻重要性状相关基因
-
2.1 水稻稻瘟病持久抗性相关基因鉴定和分子机制研究
-
水稻稻瘟病是最具毁灭性的水稻病害,水稻稻瘟病抗性周期短是一个普遍而突出的问题。由于对水稻稻瘟病持久抗性分子遗传机制不清楚,水稻稻瘟病持久抗性育种一直未能取得突破。为了突破水稻稻瘟病持久抗性分子育种的技术瓶颈,在水稻病理学家、广东省农业科学院前院长伍尚忠研究员的组织协调下,水稻所刘斌研究团队、植物保护研究所朱小源研究团队和国际水稻研究所(IRRI)首席科学家Hei Leung教授研究团队组成国际合作研究团队,在国家自然科学基金委-国际水稻研究所联合基金项目(2 项)、科技部国际科技合作重大项目、 973 计划前期研究项目、国家自然科学基金(3 项)、 广东省自然科学基金重点项目等资助下,应用分子标记技术分别对广东稻瘟病病源群体结构及“三黄占2 号稻瘟病持久抗性”进行了系统的分子遗传分析。这也是当时国际上第一个以持久抗病性为题,针对一个地区从病原菌和寄主所进行的系统的分子遗传研究。 通过对广东不同生态稻区主栽品种收集的300 多个稻瘟病菌DNA指纹分析获得了广东省稻瘟病菌群体结构(图1A),明确了“宗谱2(GDL2)” 为广东稻瘟病菌的优势宗谱,为广东省稻瘟病抗性品种布局以及抗性鉴定代表菌株的选择提供了科学依据。根据大部分病菌归属“宗谱2”这一事实并结合主栽品种系谱分析揭示了广东省主栽品种具有密切同源宗亲关系,提出引入新的抗源、开展多样化育种是解决广东水稻品种稻瘟病抗性周期短的根
-
A:应用分子标记技术分析广东稻瘟病菌群体结构;B:三黄占2 号稻瘟病持久抗性相关基因的标记定位
-
A: Application of molecular marker technology for analysis of blast pathogen population structure in Guangdong; B: Identification and mapping of the genes associated with durable blast resistance in Sanhuangzhan 2
-
图1 应用分子标记技术进行广东稻瘟病病害系统分子遗传分析
-
Fig.1 Application of molecular marker technology for analysis of rice blast pathosystem in Guangdong
-
为进一步鉴定三黄占2 号稻瘟病数量抗性相关基因,与美国Kansas州立大学Leach教授和国际水稻所Hei Leung教授合作,以防卫基因进行稻瘟病数量抗性分析[15,18-29]。研究结果表明,按防卫基因标记基因型聚类,可以把重组自交系划分为数量抗性高和低两个组。特别是,重要防卫基因几丁质酶基因、14-3-3 蛋白基因、Dehydrin蛋白基因、草酸氧化酶类蛋白基因(GLP)、致病性相关基因(PR-1)与稻瘟病数量抗性QTL共定位,并在国际上第一次提出防卫基因可能参与植物数量抗病性。通过基因芯片技术、RNA测序以及转基因遗传转化研究确认了14-3-3 蛋白和GLP蛋白两个基因家族多个成员稻瘟病抗性的功能并研究了其抗病性调控机制(图2)。研究结果已分别在国际著名期刊Plant Physiology、Molecular Plant-microbe Interactions、Plant Molecular Biology、BMC PlantBiology发表。 在基因标记鉴定基础上,以鉴定的3 个主效抗性基因紧密连锁的分子标记和相关防卫基因辅助选择育成具有稳定稻瘟病抗性的优良品系BC10 和BC116(图3)。以BC10 为恢复系育成抗病、优质、 高产的优良杂交稻组合粤杂763 通过了广东省品种审定。 以上述部分研究结果申报的科技成果“水稻稻瘟病持久抗性分子遗传机制研究及多基因抗病种质构建”获得2006 年广东省科学技术奖一等奖,“水稻稻瘟病持久抗性基因鉴定和应用”获2006 年全国发明展览会金奖。
-
2.2 水稻不同生育期耐冷性基因鉴定和多生育期耐冷新种质的创制
-
水稻低温冷害是水稻生产中的世界性难题, 在水稻不同的生长期均有发生。研究表明,水稻的
-
图2 GF14b具有调控水稻稻瘟病抗性的功能并受WRKY71 调控
-
Fig.2 GF14b functions as a regulator in rice blast resistance and is regulated by WRKY71
-
图3 分子标记辅助选择获得稳定稻瘟病抗性的优良品系
-
Fig.3 Promising lines with stable blast resistance obtained through marker-assisted selection
-
耐冷性是一个多基因控制的复杂性状。我们对来自11个国家的多样性种质不同生育期的耐冷性的评价结果表明,水稻不同生育期的耐冷性不同[30-32]。 研究表明,水稻不同生育期的耐冷性受多个基因控制,而且不同生育期控制的基因不同。因此,应用常规育种方法很难培育不同生育期耐冷的水稻品种。根据这些研究结果,我们提出了鉴定不同生育期耐冷基因,并通过基因聚合育种才能从根本上解决水稻低温冷害问题。依照这个策略,我们从2004 年开始开展水稻不同生育期耐冷基因的鉴定,并通过分子标记辅助选择基因聚合创制水稻多生育期耐冷种质,得到了科技部国际科技合作重大项目、国家自然科学基金(4项)和广东省科技计划重大项目等的资助。通过10多年的努力,研究已取得了显著进展。 通过广泛的种质资源评价,已筛选鉴定出一批不同生育期强耐冷的水稻种质资源。以这些材料发展的重组自交系群体和单片段代换系的QTL分析以及多样性水稻种质的全基因组关联分析已分别标记鉴定出发芽期、芽期、苗期、抽穗开花期水稻耐冷QTL超过50 个[33-34](图4)。进一步以高效的遗传基因组学技术与QTL分析结合分别对效应大、 稳定表达的发芽期耐冷QTL qLTG_sRDP2-10a、苗期耐冷QTL qCTS-9 和抽穗开花期耐冷QTL qCTH-6 进行候选基因分析、基因克隆和功能研究[35-36](图5)。通过不同低温处理水稻苗期表型分析以及基因芯片和RNA测序为基础的全基因组表达分析, 发现水稻苗期不同低温存在不同的冷害表型和低温响应机制[37-39]。在不同生育期耐冷基因标记鉴定基础上,选择效应较大、能稳定表达的QTL用于基因聚合育种。通过杂交、自交、分子标记辅助选择基因聚合获得带有不同生育期耐冷基因的优良品系。获得的多基因聚合系在田间试验中在不同生育期均表现出稳定的耐冷性[34](图6),为分子标记辅助选择耐冷基因聚合解决水稻不同生育期低温冷害问题提供了第一个成功的例子。研究结果已分别在国际著名期刊Plant Biotechnology Journal、 Rice、The Crop Joural、Phsiologia Plantarum、 Molecular Breeding、Euphytica发表。
-
图4 利用不同遗传材料和方法标记鉴定的部分水稻耐冷QTL
-
Fig.4 Partial cold tolerant QTL identified by using different genetic materials and methods
-
图5 水稻低温发芽期耐冷QTL qLTG_sRDP2-10a和苗期耐冷QTL qCTS-9 的克隆Fig.5 Cloning of QTL qLTG_sRDP2-10a and QTL qCTS-9 for cold tolerance at the germination and seedling stages
-
图6 聚合芽期和苗期耐冷基因的聚合系在田间耐冷性表现
-
Fig.6 The lines with pyramided cold tolerant QTLs at the bud stage and seedling stage exhibited strong cold tolerance in the field
-
2.3 对粤香占高收获指数分子遗传分析
-
籼稻品种粤香占是水稻所育成的大面积推广的优良品种,研究表明,该品种的高产性归咎于其极高的收获指数(0.61)。在广东省自然科学基金重点项目的资助下,以粤香占与低收获指数品种杂交构建的重组自交系为材料,对粤香占收获指数进行了系统的分子遗传剖析,标记定位了5 个与其高收获指数相关的QTL,其中位于第8 染色体的QTL qHI-8 在两年的试验中均能检测到,其表型贡献率分别为42.8%和44.5%。利用重组自交系该QTL区间的剩余杂合体产生的近等基因系对qHI-8 的存在及其在染色体的准确位置进行了确认(图7)。这些研究结果已在国际著名期刊Rice[40-41]发表。研究结果促进了对粤香占高收获指数分子遗传基础的深入了解,特别是其效应极大的主效QTL qHI-8 的鉴定为下一步高收获指数为基础的水稻高产分子育种创造了良好的条件。
-
2.4 通过全基因组关联分析大规模挖掘水稻重要性状相关基因
-
近年来,随着新一代测序技术、基因芯片技术、 SNP检测技术等高效基因分型技术的高速发展,催生了全基因组关联分析技术,为在种质资源中高效鉴定重要性状相关基因提供强大工具。为在水稻种质资源中大规模挖掘水稻重要性状特异优良基因, 以突破水稻分子育种的技术瓶颈,我们于2013 年起对水稻所地方稻和栽培稻的320 份核心种质进行重测序,并引进了来自96 个国家和地区、已知70 万SNP标记基因型的2000 份国际稻种。以这两套材料为基础,开展了水稻高产、优质、抗病、抗逆、 直播等30 多个重要性状的全基因组关联分析,标记鉴定出与这些重要性状相关QTL超过300 个[42-43](图8)。其中,鉴定出一批新的、有重要育种应用价值的QTL,为水稻分子育种的广泛开展以及基因克隆和功能研究提供了丰富的基因资源。
-
3 水稻分子育种取得了显著成效
-
利用水稻所标记鉴定的重要性状相关基因和已报道有重要育种应用价值的基因及标记辅助选择与常规育种方法结合已育成了一批优良的杂交稻亲本(表1)。 利用分子标记辅助选择培育的不育系和恢复系进行组合配制,自主和合作育成吉丰优1002、吉优华占、聚两优751、安丰优5618、安丰优华占、聚两优750、金稻优618、荃优466、五优466、广泰优华占、 五优618、博Ⅲ优466、长泰优298、五乡优晶占、五乡优398等杂交稻新组合60余个,在南方稻区得到大面积应用,累计推广面积在40万hm2以上。
-
图7 粤香占收获指数分子遗传分析
-
Fig.7 Genetic analysis of harvest index in Yuexiangzhan
-
图8 水稻部分重要性状全基因组关联分析
-
Fig.8 Genome-wide association analysis of some important traits in rice
-
4 水稻分子育种展望
-
经过近30 年发展,水稻所已组建了一个初具规模、以博士为主要骨干的水稻分子育种研究队伍,
-
已取得了显著成绩,水稻分子育种初见成效。我们将以这些研究为基础,进一步开展以下研究:
-
4.1 围绕水稻产业转型升级进一步开展相关基因的挖掘
-
有重大育种应用价值基因的缺乏仍然是水稻分子育种广泛开展的技术瓶颈。在水稻分子育种的未来研究中,我们仍然把优异基因的挖掘作为核心内容。将以水稻所丰富的水稻种质资源和引进的多样性丰富的国际稻种资源为材料,为了准确鉴定出多样性种质资源所有有利的遗传变异,将构建高覆盖度的泛基因组[44],结合全基因组关联分析和多组学研究对水稻重要性状相关基因大规模精确鉴定, 特别是对当前水稻产业发展十分重视的优质、高产、 绿色、高效、适应机械化操作等性状进行重点研究, 挖掘和精确鉴定有重大育种应用价值的基因,为水稻产业转型升级提供强有力技术支撑。
-
4.2 创制带有特异优良基因、遗传背景优良的新种质
-
许多优良的基因存在于一些农艺性状较差的种质中,难以为育种家所直接应用,使得这些基因未能在水稻育种中应用。为了解决这一突出问题,我们将以现代品种核心种质与多样性种质为材料进行全基因组关联分析,一方面鉴定现代品种重要性状相关基因;另一方面鉴定现代品种不存在的特异优良基因,并把这些基因通过回交、分子标记辅助选择导入到遗传背景优良的品种中,创制水稻育种新种质,使鉴定到的优异基因能为水稻育种家所直接应用。此外,在水稻重要性状功能基因组研究的基础上,针对已知功能基因进行基因编辑,对水稻进行定向改良,创制新种质。
-
4.3 建立水稻分子育种核心数据库
-
建立水稻所核心种质包括重要性状表型、序列信息、重要性状基因型、多组学数据等信息的数据库,为水稻功能基因鉴定和高效的水稻分子设计育种提供重要的信息。
-
4.4 加强水稻分子育种应用研究
-
在大规模基因标记定位的基础上,对有重大育种应用价值的基因(QTL)精确定位和克隆,分析主效QTL单倍体型和等位基因变异,研发高效选择的功能标记,充分利用水稻所在水稻常规育种成效和优势,通过分子标记辅助选择、基因编辑等技术与常规育种方法结合开展高效准确的分子育种, 使水稻所水稻育种继续走在全国的前列。
-
(责任编辑 杨贤智)
-
刘斌,博士,三级研究员,博士生导师,广东省水稻育种新技术重点实验室副主任,水稻分子育种首席科学家,广东省现代农业产业技术体系现代种业共性关键技术研发创新团队首席专家。2001 年获华南农业大学和国际水稻研究所联合培养基因工程研究方向博士学位,2003 年至2006 年国际水稻研究所水稻功能基因组博士后。 主要开展水稻重要性状相关基因的鉴定、克隆和分子育种研究。先后主持国家重点基础研究计划、“973” 计划、科技部国际科技合作重大项目、国家自然科学基金国际合作重点项目、国家自然科学基金、广东省自然科学基金(重点)项目、广东省科技计划重大项目和重点项目等国家和省级科研项目40 多项。在Plant Physiology、 Plant Biotechnology Journal、Rice、Molecular Plant-microbe Interactions、Plant Molecular Biology、Theoretical and Applied Genetics、Molecular Breeding等国内外著名专业期刊发表论文80 多篇。研究成果分别获得广东省科学技术奖一等奖、广东省自然科学三等奖、全国发明展览会金奖、 广东省“八五”基础性研究十大成就奖等。
-
参考文献
-
[1]
宋江平,陈雨,汪文娟,潘大建,曲延英,陈全家,朱小源,李晨.宝源占抗稻瘟病遗传分析及基因定位[J].广东农业科学,2014,42(12):1-5.DOI:10.16768/j.issn.1004-874X.2014.12.018.[百度学术]SONG J P,CHEN Y,WANG W J,PAN D J,QU Y Y,CHEN Q J,ZHU X Y,LI C.Genetic analysis and gene mapping of rice blast resistance in an indica rice Yuanbaozhan[J].Guangdong Agricultural Sciences,2014,42(12):1-5.DOI:10.16768/j.issn.1004-874X.2014.12.018.[百度学术] -
[2]
韩义胜,林尤珍,徐靖,唐清杰,符策强.水稻穗下第 1/2 节节间角度的QTL定位[J].广东农业科学,2012,40(22):9-11.DOI:10.16768/j.issn.1004-874X.2012.22.039.[百度学术]HAN Y S,LIN Y Z,XU J,TANG Q J,FU C Q.QTL Mapping for Internode angle of the uppermost two nodes in rice[J].Guangdong Agricultural Sciences,2012,40(22):9-11.DOI:10.16768/j.issn.1004-874X.2012.22.039.[百度学术] -
[3]
张少红,杨祁云,刘斌,朱小源,罗林,伍尚忠.利用RFLP研究广东省稻瘟病菌群体结构//中国青年农业科学学术年报(A 卷)[C].北京:中国农业出版社,1997:263-267.[百度学术]ZHANG S H,YANG Q Y,LIU B,ZHU X Y,LUO L,WU S Z.Use of RFLP to study population structure of blast pathogen in Guangdong province//Annual Report of Chinese Youth Agricultural Science,Volume A[C].Beijing:China Agricultural Press,1997:263-267.[百度学术] -
[4]
伍尚忠,罗林,张少红,杨祁云,朱小源,刘斌.广东省稻瘟病菌DNA指纹分析及其谱型结构[J].植物病理学报,1998,28(4):323-330.[百度学术]WU S Z,LUO L,ZHANG S H,YANG Q Y,ZHU X Y,LIU B.Fingerprinting analysis of Magnaporthe grisea in Guangdong province and their genetic lineage structure[J].Acta Phytopathologica Sinica,1998,28(4):323-330.[百度学术] -
[5]
伍尚忠,朱小源,杨祁云,罗林,刘斌,张少红,LEUNG H,MEW T W.应用分子标记技术鉴证稻瘟病菌宗谱与寄主遗传背景的亲缘关系[J].中国农业科学,1999,32(6):56-62.DOI:10.3321/j.issn:0578-1752.1999.06.009.[百度学术]WU S Z,ZHU X Y,YANG Q Y,LUO L,LIU B,ZHANG S H,LEUNG H,MEW T W.Identification of the relationship between the host genetic background and the rice blast pathogenic lineage by molecular markers [J].Scientia Agricultra Sinica,1999,32(6):56-62.DOI:10.3321/j.issn:0578-1752.1999.06.009.[百度学术] -
[6]
杨祁云,张少红,伍尚忠,朱小源,刘斌.广东稻瘟病的遗传宗谱与致病性的关系[J].植物保护学报,2000,27(4):289-294.DOI:10.13802/j.cnki.zwbhxb.2000.04.001.[百度学术]YANG Q Y,ZHANG S H,WU S Z,ZHU X Y,LIU B.Preliminary study of the relationship between genetic lineage and pathogenicity of Magnaporthe grisea[J].Journal of Plant Protection,2000,27(4):289-294.DOI:10.13802/j.cnki.zwbhxb.2000.04.001.[百度学术] -
[7]
LIU B.Identification of candidate genes associated with durable resistance to blast in rice(Oryza sative L.)and marker-assisted selection[D].广州:华南农业大学(英文),2001.[百度学术]LIU B.Identification of candidate genes associated with durable resistance to blast in rice(Oryza sative L.)and marker-assisted selection[D].Guangzhou:South China Agricultural University,2001.[百度学术] -
[8]
刘斌,张少红,梅曼彤,伍尚忠.分子标记在水稻稻瘟病病害系统研究中的应用[J].植物病理学报,2003,33(1):1-7.DOI:10.13926/j.cnki.apps.2003.01.001.[百度学术]LIU B,ZHANG S H,MEI M T,WU S Z.Application of molecular markers to the study of rice blast pathosystem[J].Acta Phytopathologica Sinica,2003,33(1):1-7.DOI:10.13926/j.cnki.apps.2003.01.001.[百度学术] -
[9]
伍尚忠,朱小源,刘斌,杨祈云,张少红,LEUNG H.籼稻品种三黄占2号稻瘟病持久抗性鉴定及遗传分析[J].中国农业科学,2004,37(4):528-534.DOI:10.3321/j.issn:0578-1752.2004.04.011.[百度学术]WU S Z,ZHU X Y,LIU B,YANG Q Y,ZHANG S H,LEUNG H.Genetic analysis and evaluation of durable resistance to blast in indica cultivar Sanhuangzhan 2[J].Scientia Agricultura Sinica,2004,37(4):528-534.DOI:10.3321/j.issn:0578-1752.2004.04.011.[百度学术] -
[10]
张少红,刘斌,朱小源,杨健源,伍尚忠,LEUNG H.三黄占2号稻瘟病抗性与稻米直链淀粉含量的关系研究[J].作物学报,2006,32(2):159-163.DOI:10.3321/j.issn:0496-3490.2006.02.001.[百度学术]ZHANG S H,LIU B,ZHU X Y,YANG J Y,WU S Z,LEUNG H.Relationship between blast resistance and amylose content in a RIL population derived from rice crossed SHZ-2 ×LTH[J].Acta Agronomica Sinica,2006,32(2):159-163.DOI:10.3321/j.issn:0496-3490.2006.02.001.[百度学术] -
[11]
LIU B,ZHANG S H,ZHU X Y,YANG Q Y,WU S Z,MEI M T,MAULEON R,LEACH J,MEW T,LEUNG H.Candidate defense genes as predictors of quantitative blast disease resistance in rice[J].Molecular Plant-Microbe Interactions,2004,17(10):1146–1152.DOI:10.1094/MPMI.2004.17.10.1146.[百度学术] -
[12]
LIU Y,ZHU X,ZHANG S,BERNADO M,EDWARDS J,GALBRAITH D W,LEACH J,ZHANG G S,LIU B,LEUNG H.Dissecting quantitative resistance against blast disease using heterogeneous inbred family lines in rice[J].Theor Appl Genet,2011,122(2):341-353.DOI:10.1007/s00122-010-1450-2.[百度学术] -
[13]
LIU Y,LIU B,ZHU X Y,YANG J Y,BORDEOS A,WANG G L,LEACH J E,LEUNG H.Fine-mapping and molecular marker development for Pi56(t),a NBS-LRR gene conferring broadspectrum resistance to Magnaporthe oryzae in rice[J].Theor Appl Genet,2013,126:985–998.DOI:10.1007/s00122-012-2031-3.[百度学术] -
[14]
LEACH J E,LIU B,WU J,LEE S W,HULBERT S,VERA CRUZ C,LEUNG H.Co-evolution and breeding in fungal pathosystems//In:TIKHONOVICH I,LUGTENBERG B,PROVOROV N.Biology of plant-microbe interactions,Vol.4:Molecular plant-microbe interactions:new bridges between past and future.St[M].Paul,Minn:APS Press,2004:263-269.[百度学术] -
[15]
LEACH J E,LIU B,MANOSALVA P,WU C J,WU J L,BORDEOS A,BAI J F,LEE S W,RYBA-WHITE M,BRUCE M,HULBERT S,HOOKINS C,VERA CRUZ C,LEUNG H.Dissection of durable resistance in rice//Genomic and genetic analysis of plant parasitism and defense[M].St.Paul,Minn:APS Press,2005:164-173.[百度学术] -
[16]
LEACH J E,DAVIDSON R,LIU B.Understanding broad-spectrum,durable resistance in rice//In:Rice Genetics V.BRAR D S,MACKILL D J,HARDY B.World Scientific Publishing Co[C].2007:191-208.[百度学术] -
[17]
RAGHAVAN C,ELIZABETH M,NAREDO B,WANG H,LIU B,QIU F,MCNALLY K,LEUNG H.Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping[J].Mol.Breeding,2007,19:87-101.DOI:10.1007/s11032-006-9046-x.[百度学术] -
[18]
EDWARDS J,JANDA J,SWEENEY M,GAIKWAD A,LIU B,LEUNG H,GALBRAITH D.Development and evaluation of a high-throughput,low-cost genotyping platform based on oligonucleotide microarrays in rice[J].Plant Methods,2008,4:13-24.DOI:10.1186/1746-4811-4-13.[百度学术] -
[19]
LIU B,ZHU X Y,ZHANG S H,WU J L,HAN S S,CHO Y C,ROH J H,LEACH J,LIU YAN,MADAMBA S,BORDEOS A,BARAOIDAN M,ONA I,VERA CRUZ C,LEUNG H.What it takes to achieve durable resistance to rice blast//Advances in genetics,genomics and control of rice blast disease[M].Springer,2009:385-402.[百度学术] -
[20]
MANOSALVA P,DAVIDSON R,LIU B,ZHU X,HULBERT S,LEUNG H,LEACH J.A Germin-like protein gene family functions as a complex QTL conferring broad-spectrum disease resistance in rice[J].Plant Physiology,2009,149:286-296.DOI:10.1104/pp.108.128348.[百度学术] -
[21]
LIU Q,YANG J Y,ZHANG S H,ZHAO J L,FENG A Q,YANG T F,WANG X F,MAO X X,DONG J F,ZHU X Y,LEUNG H,LEACH J E LIU B.OsGF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice[J].MolecularPlant-microbe Interactions,2015,29(1):46-56.DOI:10.1094/MPMI-03-15-0047-R.[百度学术] -
[22]
LIU Q,YANG J Y,ZHANG S H,ZHAO J L,FENG A Q,YANG T F,WANG X F,MAO X X,DONG J F,ZHU X Y,LEUNG H,LEACH J E,LIU B.OsGF14e positively regulates panicle blast resistance in rice[J].Biochemical and Biophysical Research Communications,2016,471(1):247-252.DOI:10.1016/j.bbrc.2016.02.005.[百度学术] -
[23]
LIU Q,YANG J Y,YAN S J,ZHANG S H,ZHAO J L,WANG W J,YANG T F,WANG X F,MAO X X,DONG J F,ZHU X Y,LIU B.The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice[J].Plant Molecular Biology,2016,92(4):411-423.DOI:10.1007/s11103-016-0521-4.[百度学术] -
[24]
LIU Q,YAN S J,HUANG W J,YANG J Y,DONG J F,ZHANG S H,ZHAO J L,YANG T F,MAO X X,ZHU X Y,LIU B.NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice[J].Plant Molecular Biology,2018,98:289-302.DOI:10.1007/s11103-018-0768-z.[百度学术] -
[25]
LIU Q,LI X,YAN S J,YU T,YANG J Y,DONG J F,ZHANG S H,ZHAO J L,YANG T F,MAO X X,ZHU X Y,LIU B.OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice[J].BMC Plant Biology,2018,18:257.DOI:10.1186/s12870-018-1479-y.[百度学术] -
[26]
杨梯丰,张少红,黄章慧,张桂权,刘斌.水稻耐冷QTL定位的比较分析[J].分子植物育种,2015(1):1-15.DOI:10.13271/j.mpb.013.000001.[百度学术]YANG T F,ZHANG S H,HUANG Z H,ZHANG G Q,LIU B.Metaanalysis of QTLs underlying cold tolerance in rice(Oryza sativa L.)[J].Molecular Plant Breeding,2015(1):1-15.DOI:10.13271/j.mpb.013.000001.[百度学术] -
[27]
杨梯丰,张少红,王晓飞,董景芳,黄章慧,赵均良,刘清,毛兴学,张桂权,刘斌.多样性国际稻种四个生长发育时期的耐冷性及其与籼粳性的关系[J].分子植物育种,2017,15(2):763-773.DOI:10.13271/j.mpb.015.000763.[百度学术]YANG T F,ZHANG S H,WANG X F,DONG J F,HUANG Z H,ZHAO J L,LIU Q,MAO X X,ZHANG G Q,LIU B.Evaluation of cold tolerance at four growth stages and analysis of relationship between cold tolerance and indica-japonica differentiation in a diverse rice collection(Oryza Sativa L.)[J].Molecular Plant Breeding,2017,15(2):763-773.DOI:10.13271/j.mpb.015.000763.[百度学术] -
[28]
杨志涛,李媛,张少红,杨梯丰,赵均良,董景芳,陈光辉,刘斌.377 份多样性国际稻种低温发芽力评价[J].广东农业科学,2017,44(4):1-6.DOI:10.16768/j.issn.1004-874X.2017.04.001.[百度学术]YANG Z T,LI Y,ZHANG S H,YANG T F,ZHAO J L,DONG J F,CHEN G H,LIU B.Evaluation of low temperature germinability of 377 national rice accessions[J].Guangdong Agricultural Sciences,2017,44(4):1-6.DOI:10.16768/j.issn.1004-874X.2017.04.001.[百度学术] -
[29]
ZHANG S H,ZHENG J S,LIU B,PENG S B,LEUNG H,ZhAO J L,YANG T F,HUANG Z.Identification of QTLs for cold tolerance atseedling stage in rice(Oryza sativa L.)using two distinct methods of cold treatment[J].Euphytica,2014,195(1):95-104.DOI:10.1007/s10681-013-0977-0.[百度学术] -
[30]
YANG T F,ZHANG S H,ZHAO J L,LIU Q,HUANG Z H,Mao X X,DONG J F,WANG X F,ZHANG G Q,LIU B.Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice[J].Molecular Breeding,2016,36:96.DOI:10.1007/s11032-016-0520-9.[百度学术] -
[31]
ZHAO J L,ZHANG S H,DONG J F,YANG T F,MAO X X,LIU Q,WANG X F,LIU B.A novel functional gene associated with cold tolerance at the seedling stage in rice[J].Plant Biotechnology Journal,2017,15(9):1141-1148.DOI:10.1111/pbi.12704.[百度学术] -
[32]
YANG T F,ZHOU L,ZHAO J L,DONG J F,LIU Q,FU H,MAO X X,YANG W,MA Y M,CHEN L,WANG J,BAI SONG,ZHANG S H,LIU B.The candidate genes underlying a stably expressed QTL for low temperature germinability in rice(Oryza sativa L.)[J].Rice,2020,13:74.DOI:10.1186/s12284-020-00434-z.[百度学术] -
[33]
ZHAO J L,ZHANG S H,YANG T F,ZENG Z C,HUANG Z H,LIU Q,WANG X F,LEACH J,LEUNG H,LIU B.Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms[J].Physiologia Plantarum,2015,154:381-394.DOI:10.1111/ppl.12291.[百度学术] -
[34]
DONG J F,ZHAO J L,ZHANG S H,YANG T F,LIU Q,MAO X X,FU H,YANG W,LIU B.Physiological and genome-wide gene expression analyses of cold-induced leaf rolling at the seedling stage in rice(Oryza sativa L.)[J].The Crop Journal,2019,7:431-443.DOI:10.1016/j.cj.2019.01.003.[百度学术] -
[35]
白嵩,林文贵,赵均良,马雅美,孔蕾蕾,张少红,倪世明.转录组与蛋白组技术结合分析水稻耐低温分子机制[J].分子植物育种,2020,https://kns.cnki.net/kcms/detail/46.1068.S.20200802.0912.002.html.[百度学术]BAI S,LIN W G,ZHAO J L,MA Y M,KONG L L,ZHANG S H,NGAI S M.The molecular mechanisms of cold tolerance in rice revealed by transcriptomics and proteomics analysis[J].Molecular Plant Breeding,2020,https://kns.cnki.net/kcms/detail/46.1068.S.20200802.0912.002.html.[百度学术] -
[36]
谢志梅,张少红,肖应辉,刘斌.水稻收获指数分子遗传研究进展[J].广东农业科学,2015,42(15):1-5.DOI:10.16768/j.issn.1004-874X.2015.15.001.[百度学术]XIE Z M,ZHANG S H,XIAO Y H,LIU B.Progress on molecular genetics of harvest index in rice[J].Guangdong Agricultural Sciences,2015,42(15):1-5.DOI:10.16768/j.issn.1004-874X.2015.15.001.[百度学术] -
[37]
ZHANG S H,HE X Y,ZHAO J L,CHENG Y S,XIE Z M,CHEN Y H,YANG T F,DONG J F,WANG X F,LIU Q,LIU W,MAO X X,FU H,CHEN Z M,LIAO Y P,LIU B.Identification and validation of a novel major QTL for harvest index in rice(Oryza sativa L.)[J].Rice,2017,10:44.DOI:10.1186/s12284-017-0183-0.[百度学术] -
[38]
赵均良,张少红,杨梯丰,董景芳,刘清,付华,毛兴学,刘斌.181 份多样性籼稻种质苗期和成熟期镉累积表型评价[J].分子植物育种,2018,16(18):6080-6087.DOI:10.13271/j.mpb.016.006080.[百度学术]ZHAO J L,ZHANG S H,YANG T F,DONG J F,LIU Q,FU H,MAO X X,LIU B.Phenotype evaluation of Cd accumulation of 181 diverse indica germplasm at seedling and mature stages[J].Molecular Plant Breeding,2018,16(18):6080-6087.DOI:10.13271/j.mpb.016.006080.[百度学术] -
[39]
ZHAO J L,YANG W,ZHANG S H,YANG T F,LIU Q,DONG J F,FU H,MAO X X,LIU B.Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection[J].Rice,2018,11:61.DOI:10.1186/s12284-018-0254-x.[百度学术] -
[40]
赵均良,张少红,刘斌.泛基因组及其在植物功能基因组学研究中的应用[J].植物遗传资源学报,2020.DOI:10.13430/j.cnki.jpgr.20200528001.[百度学术]ZHAO J L,ZHANG S H,LIU B.Research progress on pangenome and its application in crop functional genomics[J].Journal of Plant Genetic Resources,2020.DOI:10.13430/j.cnki.jpgr.20200528001.[百度学术]
-
摘要
水稻是我国超过60%人口的主粮,对我国粮食安全具有举足轻重的作用。随着人口的不断增加, 可耕地面积的逐渐减少,加上全球气候变化的影响,以表型鉴定和选择为基础的水稻常规育种已无法满足人们对水稻日益增长的需求。在广泛的稻种资源中挖掘特异优良基因,开展高效准确的分子育种被认为是实现水稻育种第三次突破和确保我国粮食安全的根本途径。为了进一步提升广东省水稻育种的能力和技术水平,在各级政府的大力支持下,广东省农业科学院水稻研究所建立了“广东水稻育种新技术重点实验室”和“国家水稻改良中心广州分中心”,以此为依托平台,充分利用水稻所丰富的水稻种质资源和水稻常规育种的优势,开展了大规模的水稻重要性状基因的鉴定和分子育种,已取得显著成绩。对1992年以来水稻研究所水稻分子育种技术平台的构建、水稻重要性状基因鉴定,特别是对水稻稻瘟病抗性、耐冷性和收获指数的分子遗传研究、以及以分子标记辅助选择为基础的水稻分子育种的主要进展进行综述,并对下一步水稻分子育种工作进行展望。
Abstract
Rice is the main staple food for over 60% of the population in China and plays a crucial role in food security. With the increase of population, the decrease of arable land and the impact of global climate change, the phenotype-based conventional rice breeding can not meet the increasing demand for rice. Identification of favorable genes associated with important traits and performing efficient and precise molecular breeding have been considered the fundamental way to realize the third breakthrough in rice breeding and ensure food security. To further improve the capacity and technical level of rice breeding, with the strong support from the government at various levels, “Guangdong Key Laboratory of New Technologies in Rice Breeding” and the“Guangzhou Branch of China National Center for Rice Improvement”were constructed in Rice Research Institute, Guangdong Academy of Agricultural Sciences(hereinafter called the Institute). Based on these labs, through making good use of the abundant rice germplasm resources and the strength in conventional rice breeding of the Institute, large-scale identification of genes associated with important traits was conducted and marker-assisted selection (MAS) was performed, and significant achievements have been made. This paper reviewed the major progresses in the construction of rice molecular breeding technology platform in the Institute, identification of important trait genes since 1992, in particular the molecular genetic researches of blast resistance, cold tolerance and harvest index, and MAS-based molecular rice breeding. In addition, the future prospects in molecular rice breeding was also discussed.