-
马铃薯是茄科茄属一年生草本植物,原产于 南美安第斯山脉,栽培历史已逾 7 000 年,16 世纪 由南美传播到欧洲,17 世初开始传播到中国。经 过不断发展马铃薯已经成为我国第四大粮食作物,2019 年种植面积为490.15 万hm2,产量为7033.8 万t,约占世界马铃薯总产量的1/4,连续多年稳居世界首位(联合国粮农组织数据)。 我国马铃薯种植区域目前主要分为北方一季作区、西南一二季混作区、中原二季作区和南方冬作区4 个区域。马铃薯块茎产量高,富含糖类、蛋白质和维生素以及人体必需的全部氨基酸,是维生素种类最全的粮食作物;维生素含量相当于胡萝卜的2 倍,其中维生素B族含量是苹果的4 倍,素有“第二面包”和“地下苹果”的美称,具有很高的营养价值。尽管我国马铃薯产量巨大,但人均年消费马铃薯仅为40 kg,远低于发达国家的100 kg。2015 年我国启动了马铃薯主食化战略,以改善国民膳食结构;此外,马铃薯单产高且不与水稻、小麦等主粮作物争地,是调整农业种植结构的重要替代物, 对于保障国家粮食安全具有重要意义[1]。 温度、降水和日照等气候条件显著影响马铃薯的生长发育和产量[2],随着全球气候变化,极端天气频发,低温寒害对马铃薯产业发展形成巨大挑战, 如北方一季作区和西南一二季混作区往往在春末秋初的播种期和收获期容易遭受低温寒害造成减产, 南方冬作区在生长中期(12 月至次年1 月)容易遭受短时间的低温寒潮,导致地上部萎蔫甚至死亡, 严重影响产量甚至绝收。2016 年低温寒潮导致广东冬种马铃薯大面积减产,农民损失严重。目前生产上主导马铃薯品种多为20 世纪从国外引进的品种或近缘杂交种,耐寒性差,易遭受低温寒害严重影响产量、降低经济效益,严重制约马铃薯产业的健康发展[3]。因此,探索马铃薯抗寒机制、培育抗寒新品种对于马铃薯产业的健康发展和保障国家粮食安全具有重要意义。本文主要对马铃薯抗寒资源、抗寒生理与分子机制等研究进行综述,以期对马铃薯的抗寒育种和产业的健康发展提供理论指导。
-
1 低温胁迫对马铃薯的影响
-
低温胁迫是影响植物生长发育的一个重要因子。低温胁迫分为冷害胁迫(0~15℃)和冻害胁迫(低于0℃)。冷害胁迫能够抑制细胞内光合作用、 呼吸作用和生化途径酶的活性[4],打破植物细胞内活性氧清除机制和激素平衡,最终导致细胞的死亡以及作物减产[5]。冻害胁迫导致细胞间结晶水的形成,使细胞的脱水遭受渗透胁迫,最终导致膜的损伤甚至细胞死亡[6]。
-
1.1 冷害胁迫对马铃薯的影响
-
马铃薯普通栽培品种喜冷凉,不耐低温。幼苗生长最适温为18~21℃,高于30℃或低于7℃茎叶停止生长[7], 当马铃薯遭受0~15℃低温胁迫时, 主要表现为低温冷害。如在马铃薯发芽阶段,温度低于4℃时,马铃薯芽萌发受抑制,温度长期处于5~7℃时,幼芽会形成极短的匍匐茎,顶端膨大形成小薯,或直接从块茎芽眼处长出梦生薯,严重影响出苗。在马铃薯苗期,温度低于12℃时,马铃薯植株能够形成花芽但不能开放,低于7℃时茎叶停止生长;低温可使马铃薯块茎提早形成,低于7℃ 时块茎膨大缓慢[8]。此外,在南方冬作区持续的低温往往伴随阴雨,会造成大田栽培的马铃薯光合作用降低和叶片黄化萎蔫[9]。秦玉芝等[10]对9个马铃薯品种进行低温处理,通过对叶片光合速率分析,发现10℃下所有材料的表观量子速率、光饱和点、光补偿点、气孔导度和蒸腾速率均显著降低。 研究还表明,低温冷害能够促进马铃薯叶片叶绿素降解,导致光合速率降低,最终影响产量[11]。 低温处理(4℃/2℃,昼/夜)霜冻敏感材料中薯3 号和耐霜冻材料Solanum acaule(03079-45) 幼苗,发现两者总叶绿素含量都呈先降后升的趋势, 但变化速率存在差异[12]。冷害胁迫还能够影响根的活性,张丽莉等[13]以克新18 号、克新13 号和早大白3 个马铃薯品种为试材,进行低温胁迫(7℃) 处理,结果发现,低温胁迫显著抑制马铃薯根的生长,降低根系活力;胁迫解除后,根长迅速增加, 根系活力显著增强。在S.cereale中,低温胁迫影响根对N的吸收,导致木质部N含量减少60%, 产量降低[14]。在块茎成熟阶段,低温冷害造成韧皮损伤,导致块茎横切面出现布满整个块茎或分布于受害一侧的网状坏死;随着冷害程度加深,维管束环周围出现黑褐色斑点,在脐端附近表现更严重, 块茎内部的粉红色病变也可能是由冷害引起[8]。
-
1.2 冻害胁迫对马铃薯的影响
-
低温冻害(低于0℃)会导致马铃薯减产甚至绝收[15],我国4 个马铃薯主要种植区都会遭受低温冻害,如南方冬作区冬种马铃薯播种浅、覆盖薄, 在12 月至次年2 月易受低温霜冻危害[16]。在马铃薯发芽阶段,温度降至-1℃时,马铃薯种薯会因冻害死亡,导致缺苗减产。在苗期,7℃为马铃薯茎叶生长的最低温度,当温度降到-2℃时幼苗受冻害,表现为叶片迅速萎蔫、干枯,生长点受损;冻害解除后,叶片呈水浸状,死亡后变黑萎蔫,或表现皱缩、畸形,叶出现坏死性斑点,茎杆出现斑驳, 顶端优势消失,茎节及下部芽和副芽萌发,造成主茎分枝丛生,-3℃时茎叶全部冻死[17]。马铃薯的花在温度低于-0.5℃时会受到冻害,低于-1℃时致死,造成花不开放,花蕾和花朵脱落、蔫枯;当气温低于-2℃时,马铃薯块茎停止生长,块茎遭受低温冻害解冻后,其组织由基本色变成桃红色或火红色,直至变为灰色、褐色或黑色,冻伤组织迅速变软、腐烂。此外,马铃薯受低温冻害后,植株整体表现为长势不齐,易感染病菌,直接影响产量[7]。
-
2 马铃薯抗寒资源及评价指标体系
-
2.1 马铃薯野生种抗寒资源
-
马铃薯的抗寒性主要分为抗冻害胁迫型和冻害敏感型两类,即能够在-4℃以下存活的品种为抗冻害胁迫型,只能在-2.5℃以上存活的为冻害敏感型[17]。Chen等[18]对马铃薯野生种和栽培种进行抗寒性评价,并根据半致死温度和低温驯化的程度将马铃薯分为五类:(I)抗冻害胁迫型且能够被低温驯化,主要包括S.acaule、S.commersonii、 S.multidissectum和S.chomatophilum;(II)抗冻害胁迫型且不能够被低温驯化,主要包括S.bolviense、S.megistacroiobum和S.sanctae-rosae;(III)冻害敏感性且能够被低温驯化,主要包括S.oplocense和S.polytrichon;(IV)冻害敏感性且不能够被低温驯化,主要包括S.brachistotrichum、 S.cardiophyllum和S.fendleri等,LT50范围是-2.5~3.5℃,其中马铃薯普通栽培种S.tuberosum的耐受温度为-3℃;(V)冷害敏感型,只有S.trifldum一个种。国内许多育种家也对马铃薯野生种进行抗寒性评价。赵喜娟等[19]通过人工冷冻法对18个野生种的97份材料进行抗寒性评价,结果表明S.acaule、S.bukasovii、S.commersonii等抗寒能力最强,S.chomatophilum、S.demissum、S.megistacrolobum和S.acaule等中也具有较强抗寒能力。李飞等[20]通过人工冷冻鉴定结合聚类分析的方法对25份S.acaule无性系材料进行抗寒评价,低温驯化前主要分为霜冻敏感型(12份)、耐冻型(11份)、强耐冻型(2份),低温驯化后霜冻敏感型减少9份,耐冻型和强耐冻型材料分别增加到12份和10份,且这个抗寒评价与田间自然霜冻评价结果一致。
-
2.2 马铃薯栽培种抗寒资源
-
马铃薯普通栽培种主要是S.tuberosum,被认为是低温敏感型且不能被低温驯化,随着马铃薯抗寒育种研究的不断深入,育种专家们已经筛选出许多具有一定抗寒性的材料,并作为亲本进行马铃薯抗寒育种。丁红映等[21]用隶属函数法和聚类分析法对103 份马铃薯种质资源的耐寒性进行综合评价,筛选出16 份抗寒材料,评价结果表明,国外引入种质资源的抗寒性最强,国内种质资源中北方一季作区抗寒性强于其他地区。可见,从抗寒优势区引进资源,有利于改善马铃薯抗寒性。董建科等[22] 分别以MLM266-2、Lucky和RH89-039-16、10908-06 作为抗感对照种,对140 份马铃薯栽培种及8份种间杂种材料进行了抗寒能力和驯化抗寒能力鉴定,筛选出Alaska Frostless、Simcoe、 M1、华渝5号和华薯11 号等9 份抗寒性较强的栽培种材料,以及14FT24-10 和14FT04-25 两份种间杂种材料。刘浩等[23]采用自然霜冻法,对宁夏西吉县14 个马铃薯主栽品种进行抗寒性评价,结果表明,晋薯7 号、新大平、内薯7 号抗寒性较强, 夏波蒂、大西洋、宁薯8 号、陇薯6 号、陇薯3 号等5 个品种抗寒性中等,青薯168、中心24 号、 宁薯9 号、宁薯4 号、虎头、云薯6 号等6 个品种为霜冻敏感型。黄先群等[24]对地方品种普安紫洋芋和费乌瑞它自然及辐射变异株系的抗寒性进行鉴定,获得了费乌瑞它自然变异抗寒株系Ⅲ-25-5 和辐射变异抗寒株系3-23X。此外,许多研究对马铃薯的栽培种进行了抗寒性评价,为未来马铃薯抗寒新品种的选育提供了参考[19]。
-
2.3 马铃薯抗寒评价指标体系
-
2.3.1 形态及生长发育指标评价
-
植物形态学相关指标可以作为低温胁迫损伤的直接鉴定依据[25]。 关于马铃薯的形态学特征与抗寒性的关系已有相关研究,如Palta等[26]研究24 个抗寒性不同的马铃薯品种生长习性、叶片形状、气孔指数和栅状组织的数目,结果表明抗寒性品种有2 个栅状组织,不抗寒品种仅1 个;抗寒性品种的气孔指数是不抗寒品种的3 倍,且抗寒性品种具有更多小而厚的叶片, 因此,气孔指数和栅栏组织被认为可以作为马铃薯抗寒性的评价指标。 马铃薯苗期抗寒性的鉴定还可以根据植株的冻害程度。对植株的器官、组织进行评价。Vega等[27] 对101 个不同种的2635 份马铃薯材料在低温胁迫恢复后的植株状态进行低温损伤评级,根据叶片茎秆的表型确定了0~6 级的评级标准。涂卫等[28]在此基础上通过计算植株受损伤害指数建立了马铃薯苗期抗寒评价体系,该评价体系与半致死温度评价体系结果一致,可以用于大量材料的抗寒性筛选。 寇爽等[29]利用该方法对137 个普通栽培种杂交组合的16068 个后代进行抗寒筛选(-3℃),筛选出相对抗寒组合26 个,包括13 个抗寒母本和7 个抗寒父本;对抗寒亲本进行半致死温度验证,结果与评价结果一致。
-
2.3.2 电导率拟合Logistic方程鉴定法
-
大量研究结果表明,离子渗透率拟合Logistic方程进行回归分析,以拐点温度指示植物组织的半致死温度(LT50)可以更准确地评价植物的抗寒性[30]。电导率测定法配合Logistic方程鉴定马铃薯抗寒性已经得到广泛应用。李飞等[12]对25 份野生种和不抗寒对照种中薯3 号进行低温胁迫(-7~0℃)处理, 通过测定离体叶片的离子渗透率并拟合Logistic方程得到了LT50,中薯3 号的LT50 为-2.5℃,野生种马铃薯3079-444 的LT50 最低为-8℃,与前人研究结果一致。李华伟等[31]以18 份马铃薯资源和47 份马铃薯后代品系为材料,采用低温胁迫处理马铃薯离体叶片,测定其相应电导率,拟合Logistic方程得出其半致死温度LT50,将供试材料分为低温敏感型、中间型、耐寒性较强3类,筛选出耐寒性强的2份资源及4份后代品系。巩慧玲等[32]对二倍体材料H28-7 和RH及其杂交后代H7R-3,-15,-175,-199 以及四倍体栽培种大西洋、斯诺登、卡它丁和布尔斑克进行低温驯化并利用电导率拟合Logistic方程比较LT50,发现未经低温驯化时,二倍体H28-7 的最高,经低温驯化后,H28-7、H7R-15 和H7R-175 等3 个材料的LT50 几乎不变,其他材料的LT50 均有所降低。
-
2.3.3 生化指标结合隶属函数综合评价法
-
低温胁迫对植物的细胞膜系统、保护酶系统、渗透调节系统和光合作用都会产生不利影响[33],植物抗氧化性作为影响抗逆性的关键因子,是植物对低温胁迫的应激反应。活性氧(ROS)是生物有氧代谢过程中的一类化学分子,包括氧离子、过氧化物和含氧自由基,低温胁迫会诱导ROS的产生和积累,对蛋白质、核酸、脂质等产生氧化伤害。此外,ROS通过降解不饱和脂肪酸会产生MDA影响细胞膜的渗透性,导致细胞和组织死亡[34]。杨慧菊等[35] 分析了10 个马铃薯栽培种在低温胁迫条件下的叶片相对电导率、MDA含量、超氧化物歧化酶(SOD) 活性、过氧化物酶(POD)活性和可溶性蛋白含量, 发现抗寒性强的品种SOD、POD和可溶性蛋白含量高于不抗寒品种,叶片相对电导率和MDA含量则呈相反趋势。 为将这些生理指标更好地与马铃薯抗寒性关联起来,采用模糊数学的隶属函数法综合评价马铃薯抗寒性是一种更为有效的方法[36]。杨慧菊等[35] 以马铃薯叶片各项生理指标作为抗寒性的评价指标,采用主成分分析法、隶属函数法和聚类分析法对马铃薯的抗寒性进行综合评价,结果与低温胁迫后植株霜冻损伤评分结果相符。
-
3 马铃薯抗寒生理机制
-
3.1 低温胁迫与活性氧清除机制
-
低温胁迫会导致植物细胞ROS积累,最终引起细胞损伤,提升ROS清除系统被认为是赋予植物胁迫耐性的重要途径之一。植物活性氧清除机制关键酶包括抗坏血酸过氧化物酶(APX),SOD、 POD和过氧化氢酶(CAT),低温胁迫后,植物叶片POD、CAT和SOD活性显著升高,APX和CAT能够清除游离自由基,SOD能够催化超氧根离子O2 −,减少氧化胁迫损伤[37]。辛翠花等[11]研究表明,低温(5℃)处理48 h后,马铃薯品种大西洋的SOD活性先降后升,POD活性先升后降。许娟等[38] 对两类感抗寒性马铃薯品种进行低温胁迫处理(5℃),发现低温胁迫后叶片POD、CAT和SOD活性明显升高,且抗寒品种活性氧清除酶活性高于不抗寒品种。外源钙素、水杨酸(SA)处理可提高SOD、POD和CAT活性,减轻低温胁迫对细胞的氧化损伤度,加快细胞修复速度,提高马铃薯植株抗寒性[39-40],以上研究结果表明,马铃薯抗寒性与活性氧清除机制密切相关。
-
3.2 低温胁迫与渗透调节物质
-
低温胁迫尤其是冻害胁迫会导致细胞脱水, 形成渗透胁迫最终造成细胞死亡。植物细胞渗透调节物质包括可溶性蛋白、离子、糖类和脯氨酸等。研究表明,低温胁迫条件下,抗寒品种脯氨酸含量高于不抗寒品种,脯氨酸的含量与抗寒性呈正相关[41],且作为抗寒马铃薯品种鉴定的生理指标[38]。除脯氨酸外,可溶性蛋白含量在低温胁迫条件下也显著降低[36, 38]。糖类及糖醇、 氨基酸及其衍生物在调节细胞渗透胁迫耐性中也起着重要作用。在抗寒马铃薯品种S.commersonii中,低温促进蔗糖、果糖、葡萄糖以及甜菜苷和棉子糖等低聚糖的积累,且抗寒品种显著高于不抗寒品种[42]。此外,多胺类物质也在马铃薯抗寒过程中发挥重要功能,研究发现,在冻害胁迫敏感型马铃薯S.phureja和Desiree中多胺的含量处于较低水平且结构稳定,但在抗冻性品种S.acaule和88-35-7中存在较高水平的可溶性多胺成分[43]。外源施加渗透调节物质,如钙素、脱落酸、亚精胺和油菜素内酯等能够显著增强可溶性糖和蛋白以及脯氨酸等含量[39, 44]。 低温胁迫下,植物叶片的离子渗透率增加,细胞膜脂过氧化产物MDA积累,最终导致细胞膜透性的增加。许多研究表明,MDA含量与马铃薯植株的抗寒性呈负相关,是抗寒马铃薯鉴定的生理指标[32,38]。钙素预处理能够显著降低离子渗透率和MDA含量,维持膜的稳定性降低膜损伤[39]。
-
4 马铃薯抗寒分子机制
-
4.1 基因组水平
-
许多作物包括水稻等利用基因组学分析手段对作物性状的遗传规律进行解析[45]。马铃薯普通栽培种被认为是低温敏感型且不能被低温驯化。但马铃薯野生种S.commersonii是抗寒性最强的,通过基因组水平分析发现,与S.tuberosum相比,S.commersonii基因组的杂合性(仅为1.5%)显著低于栽培种(53%~59%),且基因组较小,这种差异主要是由基因间的序列长度差异引起的。参考转录组数据注释基因组预测了1703 个microRNA以及18, 882 个非编码RNA。在非编码RNA中有20%能够靶定到低温胁迫响应基因上,这些低温响应基因共预测到39290 个蛋白,其中有126 个低温胁迫相关基因是S.tuberosum上没有的,进化树分析发现S.commersonii与S.tuberosum的分离发生在230 万年前[46]。S.commersonii基因组测序为研究马铃薯的驯化以及创制马铃薯新资源提供了参考。 随着分子生物学的发展,在表观遗传学层面研究马铃薯抗寒机制也逐渐展开。在植物基因组区域存在许多激活的顺式调节DNA元件,被定义为DNA超敏感位点(DHS)。Zeng等[47]绘制了马铃薯低温胁迫的DHS图谱,并发现在低温胁迫条件下, 染色质可及性和二价组蛋白甲基转移酶H3K4me3-H3K27me3 修饰增强,影响低温胁迫相关基因的表达,调节马铃薯植株的低温胁迫耐性。
-
4.2 转录组水平
-
转录组分析是解析马铃薯胁迫响应的重要手段。Alicia等[48]以DM1-3516 R44 为材料,通过转录组分析其在盐、干旱和高温等非生物胁迫和马铃薯晚疫病等非生物胁迫,通过参考拟南芥进行对比,揭示了不同的胁迫响应调节通路和差异基因。 在马铃薯低温胁迫的研究中,转录组分析技术已得到逐步推广。马铃薯野生种S.commersonii在低温驯化和非低温驯化条件下低温胁迫进行转录组分析,表明,低温驯化条件下差异基因为720 个,非低温驯化条件下差异基因为784 个,前者特异差异基因为71 个,后者为135 个;GO分析两种条件下差异的代谢通路,发现非低温驯化条件下差异基因主要富集到细胞质部分,细胞器代谢、光合作用和油菜素内酯代谢途径;低温驯化条件下差异基因主要富集到金属和镉离子代谢、共质体以及液泡代谢途径[46]。利用转录组结合蛋白组分析马铃薯S.tuberosum低温胁迫响应,表明抗氧化相关基因和蛋白受低温胁迫诱导表达明显,光合作用相关基因受低温胁迫抑制表达;此外,一些氨基酸和糖类代谢相关的基因和酶类受低温胁迫影响显著[49]。 通过对马铃薯栽培种Bintje和其矮化突变体进行RNA-seq分析,发现突变体中胁迫相关的基因表达上调,包括温度胁迫响应蛋白COR413-PM2 等[50]。
-
4.3 基因功能
-
目前,在植物响应低温胁迫的分子机制方面已经开展了大量研究,主要包括植物激素、转录因子、激酶以及功能蛋白等[51-52]。其中ICE-CBFCOR信号传导途径被认为在低温驯化中起关键作用[53]。 马铃薯中存在CBF3-CBF1-CBF2-CBF2B和CBF5-CBF4 两个基因簇,通过比较马铃薯S.tuberosum和S.commersonii中CBF基因家族发现, 在S.tuberosum上存在CBF4 和CBF5 基因, 且CBF4 与CBF5 是联系在一起的,但在S.commersonii中只有CBF4[54]。马铃薯中只有CBF1 和CBF4 能够被低温诱导表达,在S.tuberosum和S.commersonii中过表达ScCBF1 提升了植株的干旱胁迫耐性,与对照相比脯氨酸含量显著升高[55]。 低温胁迫影响细胞膜的流动性,导致渗透性降低,最终细胞解体死亡。马铃薯stearoyl-ACP desaturase(ω-9)基因在细胞膜脂质去饱和中发挥重要功能,与不抗寒品种S.tuberosum相比,在抗寒品种S.commersonii中,低温胁迫能够显著诱导ω-9基因的表达,在S.tuberosum中过表达ω-9 改变了细胞膜脂肪酸脂质的组成,提升了马铃薯植株的抗寒性[56]。在S.commersonii、S.acaule和S.cardiophyllum中 ω-6 脱氢酶基因(FAD2)的序列分析发现,核苷酸中有8 个位点的差异导致对应的氨基酸残基变化,其中第11 和第44 位氨基酸残基与马铃薯冷驯化存在一定的相关性,表达模式分析发现,低温驯化后FAD2 基因在3 个马铃薯野生种中表达上调,但S.commersonii和S.acaule的FAD2 基因表达水平显著高于S.cardiophyllum[57]。 此外,植物激素作为重要的调节因子广泛参与低温胁迫耐性的响应,在许多植物中已进行了较为深入的研究。在马铃薯中低温胁迫通过诱导ABA信号途径AREB3 和ABI5 的表达直接调控StADC1 的表达,并介导腐胺合成增强CBF途径上相关基因的表达来提高驯化抗寒性[58]。马铃薯ScmiR390-5p通过抑制SCLRRK1 的表达参与低温胁迫响应的调节,且ScmiR390-5p/SCLRRK1 调控模块在盐胁迫、渗透胁迫和6-BA响应中也起重要作用[59]。低温胁迫诱导乙烯响应蛋白StEREBP1 的表达,过表达StEREBP1 提升了马铃薯植株的抗寒性,且与对照相比马铃薯产量提升30%[60]。 过表达StGA2ox1 基因,降低马铃薯植株体内活性GA的含量,诱导胁迫响应基因RD28、DREB1、 WRKY1 和SnRK2 的表达,提升了脯氨酸含量,表现出更强的低温胁迫耐性[61]。 马铃薯普通栽培种不耐低温且不能被驯化,因此引入外源抗寒基因也是解决马铃薯抗寒性的选择之一。在马铃薯栽培种(cv.Desiree)中异源表达拟南芥DREB1A和DREB1B显著增强马铃薯植株抗寒性,与对照相比,转基因植株的脯氨酸含量较高[62]。在马铃薯中利用胁迫诱导性启动子rd29A异源表达AtCBF1 和AtCBF3 基因,能够提升马铃薯植株的抗寒性,并且能够最大限度的减少对产量的影响[63]。同样地,将蓝藻 Δ12 酰脂质脱氢酶desA基因过表达到S.tuberosum中,转基因植株脂肪酸含量比对照高42%,且经过低温胁迫表现出更强的胁迫耐性[64]。这些分子机制的研究为马铃薯抗寒分子育种提供了理论依据和基因资源。
-
5 展望
-
马铃薯抗寒性研究逐渐成为育种专家们关注的重点,解析马铃薯抗寒的分子机制,挖掘抗寒遗传位点,最终培育抗寒马铃薯新品种,已经成为新的挑战。马铃薯普通栽培种遗传基础狭窄,抗寒育种面临巨大挑战。此外,马铃薯抗寒性是由多基因控制,调控机制复杂。因此,亟需收集抗寒性强的资源,拓宽马铃薯育种亲本的遗传基础;结合现代分子生物学手段,挖掘抗寒关键的遗传位点,通过分子设计育种、倍性育种等手段更快、更高效地进行育种。随着马铃薯抗寒研究的不断深入,育种技术的不断提高,马铃薯抗寒育种将会取得突破性进展。
-
(责任编辑 白雪娜)
-
李小波,博士,副研究员,硕士生导师,广东省现代农业产业技术体系创新团队马铃薯育种岗位专家。现任广东省农业科学院作物研究所马铃薯研究室负责人,兼任广东省马铃薯产业技术创新联盟常务副理事长,中国作物学会马铃薯专业委员会委员。 主要从事马铃薯遗传育种和节本增效栽培技术研究与应用等,先后主持广东省应用型研发专项、国家重点研发计划子课题、广东省马铃薯良种重大科研联合攻关等各级项目14 项;获广东省农业技术推广奖一等奖2 项,二等奖1 项;主持制定地方标准1 项;主持培育马铃薯品种2 个,参与培育马铃薯品种4 个;获得植物新品种保护权1 项;培育的品种多次被列为广东省和广州市主导品种,推广面积达300 万亩以上,社会经济效益显著。主编著作2 部,发表科技论文30 余篇;申请和获授权国家发明专利5 项,实用新型专利3 项,软件著作权4 项。
-
参考文献
-
[1]
黄泽颖,孙君茂,郭燕枝.典型地区马铃薯主食产业化推进竞争力比较研究[J].广东农业科学,2019,46(9):157-164.DOI:10.16768/j.issn.1004-874X.2019.09.022.[百度学术]HUANG Z Y,SUN J M,GUO Y Z.Comparative study on the competitiveness of promotion practices of potato staple food industrialization in typical areas[J].Guangdong Agricultural Sciences,2019,46(9):157-164.DOI:10.16768/j.issn.1004-874X.2019.09.022.[百度学术] -
[2]
高建文,王连喜,刘静,吴志岐.宁夏马铃薯主产区关键生育期气象适宜度评价[J].广东农业科学,2018,45(9):9-13.DOI:10.16768/j.issn.1004-874X.2018.09.002.[百度学术]GAO J W,WANG L X,LIU J,WU Z Q.Evaluation of meteorological suitability for key growth stage of main potato producing areas in Ningxia[J].Guangdong Agricultural Sciences,2018,45(9):9-13.DOI:10.16768/j.issn.1004-874X.2018.09.002.[百度学术] -
[3]
李小波,刘晓津.广东冬种马铃薯优新品种与节本增效栽培技术 [M].广州:广东教育出版社,2018.[百度学术]LI X B,LIU X J.Excellent new varieties of winter potato varieties in Guangdong and their cost-saving and high-efficiency cultivation techniques[M].Guangzhou:Guangdong Education Publishing House,2018.[百度学术] -
[4]
ZHU J.Abiotic stress signaling and responses in plants[J].Cell,2016,167(2):313-324.DOI:10.1016/j.cell.2016.08.029.[百度学术] -
[5]
BIELACH A,HRTYAN M,TOGNETTI V B.Plants under stress:involvement of auxin and cytokinin[J].International Journal of Molecular Sciences,2017,18:1427.DOI:10.3390/ijms18071427.[百度学术] -
[6]
THOMASHOW M F.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50(1):571-599.DOI:10.1146/annurev.arplant.50.1.571.[百度学术] -
[7]
门福义,刘梦芸.马铃薯栽培生理[M].北京:中国农业出版社,1995.[百度学术]MEN F Y,LIU M Y.Physiology of potato cultivation[M].Beijing:China Agriculture Press,1995.[百度学术] -
[8]
凌永胜.泉州市冬种马铃薯2008年冷害浅析[J].福建农业科技,2009(1):25-26.[百度学术]LING Y S.Analysis on chilling injury of winter potato in Quanzhou city in 2008[J].Fujian Agricultural Science and Technology,2009(1):25-26.[百度学术] -
[9]
夏小曼,陈国保,蒋运志.罕见低温寒害对玉林马铃薯的影响及应对策略[J].广西园艺,2008(6):24-25.DOI:10.3969/j.issn.1674-5868.2008.06.011.[百度学术]XIA X M,CHEN G B,JIANG Y Z.Effects of rare cold injury on potato of Yulin and its countermeasures[J].Guangxi Horticulture,2008(6):24-25.DOI:10.3969/j.issn.1674-5868.2008.06.011.[百度学术] -
[10]
秦玉芝,陈珏,邢铮,何长征,熊兴耀.低温逆境对马铃薯叶片光合作用的影响[J].湖南农业大学学报(自然科学版),2013,39(1):26-30.DOI:10.3724/SP.J.1238.2013.00026.[百度学术]QIN Y Z,CHEN Y,XING Z,HE C Z,XIONG X Y.Effects of low temperature stress on photosynthesis in potato leaves[J].Journal of Hunan Agricultural University(Natural Sciences),2013,39(1):26-30.DOI:10.3724/SP.J.1238.2013.00026.[百度学术] -
[11]
辛翠花,蔡禄,肖欢欢,李娜,郭江波.低温胁迫对马铃薯幼苗相关生化指标的影响[J].广东农业科学,2012,39(22):19-21.DOI:10.16768/j.issn.1004-874X.2012.22.043.[百度学术]XIN C H,CAI L,XIAO H H,LI N,GUO J B.Influence of low temperature stress on the related physiological indexes in potato seedings[J].Guangdong Agricultural Sciences,2012,39(22):19-21.DOI:10.16768/j.issn.1004-874X.2012.22.043.[百度学术] -
[12]
李飞,刘杰,段绍光,金黎平.马铃薯幼苗在冷驯化期间的生理生化变化[J].中国马铃薯,2008,22(5):257-260.DOI:10.3969/j.issn.1672-3635.2008.05.001.[百度学术]LI F,LIU J,DUAN S G,JIN L P.Physiological and biochemical changes of potato seedlings during cold acclimation[J].Chinese Potato,2008,22(5):257-260.DOI:10.3969/j.issn.1672-3635.2008.05.001.[百度学术] -
[13]
张丽莉,祁雪,张良,崔太华,魏峭嵘,石瑛.低温对马铃薯根系发育的影响//2013 年中国马铃薯大会[C].重庆,2013.[百度学术]ZHANG L L,QI X,ZHANG L,CUI T H,WEI Q R,SHI Y.Effect of low temperature on root development of Potato//Potato Professional Committee of Chinese Crop Society In 2013[C].Chongqing,2013.[百度学术] -
[14]
LAINE P,BIGOT J,OURRY A,BOUCAUD J.Effects of low temperature on nitrate uptake,and xylem and phloem flows of nitrogen,in Secale cereale L.and Brassica napus L[J].New Phytol,1994,127:675-683.[百度学术] -
[15]
薛凌英,林丽萱,郑中凯.2016 年长乐市低温冻害对马铃薯减产的影响分析[J].南方农机,2016,47(8):28-29.DOI:10.3969/j.issn.1672-3872.2016.08.020.DOI:10.3969/j.issn.1672-3872.2016.08.020.[百度学术]XUE L Y,LIN L X,ZHENG Z K.Analysis on the impact of freezing stress on potato yield reduction in Changle city in 2016[J].The Southern Farm Machinery,2016,47(8):28-29.DOI:10.3969/j.issn.1672-3872.2016.08.020.[百度学术] -
[16]
熊兴耀,刘明月,何长征,宋勇.冰雪灾害对湖南马铃薯生产的影响、 恢复措施及应对策略[J].湖南农业科学,2008(2):55-56.DOI:10.3969/j.issn.1006-060X.2008.02.021.[百度学术]XIONG X Y,LIU M Y,HE C Z,SONG Y.Effects of snow and ice disaster on potato production in Hunan Province,recovery measures and countermeasures[J].Hunan Agricultural Sciences,2008(2):55-56.DOI:10.3969/j.issn.1006-060X.2008.02.021.[百度学术] -
[17]
LI P H,HUNER N P A,TOIVIO K M,CHEN H H,PALTA J P.potato freezing injury and survival,and their relationships to other stress [J].American Potato Journal,1981,58:15-29.DOI:10.1007/BF02855377.[百度学术] -
[18]
CHEN H H,PH.LI.Characteristics of cold acclimation and deacclimation of tuber-bearing Solanum species[J].Plant Physiol,1980,65:1146-1148.[百度学术] -
[19]
赵喜娟.马铃薯苗期抗寒性直接鉴定方法的建立与抗寒资源筛选 [D].武汉:华中农业大学,2013.[百度学术]ZHAO X J.Establishing cold resistant direct identification method of potato seeding and screening cold resistant resources[D].Wuhan:Huazhong Agricultural University,2013.[百度学术] -
[20]
李飞.野生马铃薯植株苗期耐冻性鉴定及耐冻机理研究[D].北京:中国农业科学院,2008.DOI:10.7666/d.Y1422183.[百度学术]LI F.Assessment and mechanism study for freezing tolerance in Solanum acaule seeding[D].Beijing:Chinese academy of agricultural sciences,2008.DOI:10.7666/d.Y1422183.[百度学术] -
[21]
丁红映,熊兴耀,王万兴,胡新喜,田宇豪,秦玉芝.103 份马铃薯种质资源的耐寒性评价[J].中国蔬菜,2019(12):46-55.[百度学术]DING H Y,XIONG X Y,WANG W X,HU X X,TIAN Y H,QIN Y Z.Evaluation of cold tolerance of 103 potato germplasm resources[J].China vegetables,2019(12):46-55.[百度学术] -
[22]
董建科,涂卫,赵庆浩,周帅,王俊豪,张卓,宋波涛.国内主要马铃薯品种(系)抗寒性鉴定//马铃薯产业与健康消费(2019),中国作物学会马铃薯专业委员会[C].恩施,2019.[百度学术]DONG J K,TU W,ZHAO Q H,ZHOU S,WANG J H,ZHANG Z,SONG B T.Identification of cold resistance of main domestic potato varieties(lines)//Potato industry and healthy consumption(2019),Potato Professional Committee of Chinese Crop Society[C].Enshi,2019.[百度学术] -
[23]
刘浩,张宗山.宁夏南部山区马铃薯主栽品种耐霜冻性研究[J].安徽农业科学,2008,36(33):14485-14486,14551.DOI:10.3969/j.issn.0517-6611.2008.33.051.[百度学术]LIU H,ZHANG Z S.Research on the frost-resistant of potato variety grown in southern mountain of Ningxia Hui autonomous district[J].Journal of Anhui Agricultural Science,2008,36(33):14485-14486,14551.DOI:10.3969/j.issn.0517-6611.2008.33.051.[百度学术] -
[24]
黄先群,曹通,辛智海,李旭,李丽,黄团.马铃薯抗寒材料的筛选及鉴定[J].西南农业学报,2014,27(3):991-995.[百度学术]HUANG X Q,CAO T,XIN Z H,LI X,LI L,HUANG T.Selection and identification of cold resistance lines on potato[J].Southwest China Journal of Agricultural Sciences,2014,27(3):991-995.[百度学术] -
[25]
曾宪海,焦云飞,廖子荣,潘登浪,林位夫.广东不同地区引种油棕叶片解剖结构对油棕抗寒力的影响[J].广东农业科学,2018,45(8):50-58.DOI:10.16768/j.issn.1004-874X.2018.08.008.[百度学术]ZENG X H,JIAO Y F,LIAO Z R,PAN D L,LIN W F.Effects of leaf anatomical structure features on cold resistance of oil palm(Elaeis guineensis Jacq.)introduced in different regions in Guangdong Province[J].Guangdong Agricultural Sciences,2018,45(8):50-58.DOI:10.16768/j.issn.1004-874X.2018.08.008.[百度学术] -
[26]
PALTA J P,LI P H.Frost-hardiness in relation to leaf anatomy and natural distribution of several Solanum species[J].Crop Science,1979,19:665-671.[百度学术] -
[27]
VEGA S E,BAMBERG J B.Screening the US potato collection for frost hardiness[J].American Potato Journal,1995,72:13-21.[百度学术] -
[28]
涂卫,赵喜娟,寇爽,康黎,陈琳,宋波涛.马铃薯苗期抗寒能力直接评价体系的建立与应用[J].中国马铃薯,2015,29(1):1-7.DOI:10.3969/j.issn.1672-3635.2015.01.001.[百度学术]TU W,ZHAO X J,KOU S,K ANG L,CHEN L,SONG B T.Establishment and application of direct cold-resistance evaluation system for potato seedlings[J].Chinese Potato,2015,29(1):1-7.DOI:10.3969/j.issn.1672-3635.2015.01.001.[百度学术] -
[29]
寇爽,涂卫,赵喜娟,梅文祥,陈琳,宋波涛.马铃薯普通栽培种杂交后代抗寒性分析[J].中国马铃薯,2015,29(5):257-262.[百度学术]KOU S,TU W,ZHAO X J,MEI W X,CHEN L,SONG B T.Analysis of freezing tolerance on hybrid progenies of potato cultivars[J].Chinese Potato,2015,29(5):257-262.[百度学术] -
[30]
令凡,李朝周,回振龙,焦健,吕鹏.应用电导率法及Logistic方程测定油橄榄品种的抗寒性[J].广东农业科学,2015,42(1):13-17.DOI:10.16768/j.issn.1004-874X.2015.01.026.[百度学术]LING F,LI C Z,HUI Z L,JIAO J,LYV P.Measurement of cold tolerance by electrical conductivity method in associated with the Logistic equation ondifferent varieties of Olea europaea L.[J].Guangdong Agricultural Sciences,2015,42(1):13-17.DOI:10.16768/j.issn.1004-874X.2015.01.026.[百度学术] -
[31]
.李华伟,邱思鑫,汤浩,林志坚,许泳清,罗文彬,纪荣昌,张鸿,李国良,刘中华,邱永祥.电导率法及Logistic方程鉴定马铃薯材料的耐寒性[J].福建农业学报,2016,31(8):810-815.DOI:10.19303/j.issn.1008-0384.2016.08.004.[百度学术]LI H W,QIU S X,TANG H,LIN Z Z,XU Y Q,LUO W B,JI R C,ZHANG H,LI G L,LIU Z H,QIU Y X.Predicting cold tolerance of potato plants by elec trig conductivity measurements on leaves under low-temperature stress[J].Fujian Journal of Agricultural Science,2016,31(8):810-815.DOI:10.19303/j.issn.1008-0384.2016.08.004.[百度学术] -
[32]
巩慧玲,冯再平,蒋继明.电导率法配合Logistic方程确定马铃薯低温驯化前后叶片的半致死温度//中国作物学会马铃薯专业委员会[C].北京,2015.[百度学术]GONG H,FENG Z,JIANG J.The electric conductivity method and Logistic equation were used to determine the semi-lethal temperature of potato leaves under cold acclimation//Potato Professional Committee of Chinese Crop Society[C].Beijing,2015.[百度学术] -
[33]
曹红星,雷新涛,刘艳菊,孙程旭,张如莲.椰子抗寒相关生理生化指标筛选及评价[J].广东农业科学,2016,43(2):49-54.DOI:10.16768/j.issn.1004-874X.2016.02.010.[百度学术]CAO H X,LEI X T,LIU Y J,SUN C X,ZHANG R L.Identification and comprehensive evaluation of cold resistance indexes of coconut[J].Guangdong Agricultural Sciences,2016,43(2):49-54.DOI:10.16768/j.issn.1004-874X.2016.02.010.[百度学术] -
[34]
MITTAL D,MADHYASTHA D A,GROVER A.Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice[J].PLOS ONE,2012,7:e40899.[百度学术] -
[35]
杨慧菊,郭华春.马铃薯不同品种抗寒性综合评价[J].分子植物育种,2017,15(2):716-724.DOI:10.13271/j.mpb.015.000716.[百度学术]YANG H J,GUO H C.Comprehensive evalution of cold resistence of potato varieties[J].Molecular Plant Breeding,2017,15(2):716-724.DOI:10.13271/j.mpb.015.000716.[百度学术] -
[36]
许泳清,李华伟,罗文彬,纪荣昌,李国良,汤浩.利用隶属函数法综合评价马铃薯品种资源试管苗的抗寒性//2016 年中国马铃薯大会[C].张家口,2016.[百度学术]XU Y Q,LI H W,LUO W B,JI R C,LI G L,TANG H.The subjection function method was used to evaluate the cold resistance of potato varieties in vitro//2016 China Potato Congress[C].Zhangjiakou,2016.[百度学术] -
[37]
MITTLER R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7:405-410.DOI:10.1016/S1360-1385(02)02312-9.[百度学术] -
[38]
许娟,郑虚,闫海锋,唐秀桦,熊军,韦民政,覃维治,李韦柳.不同马铃薯品种苗期叶片对低温胁迫的生理响应[J].南方农业学报,2016,47(11):1837-1843.DOI:10.3969/jissn.2095-1191.2016.11.1837.[百度学术]XU J,ZHENG X,YAN H F,TANG X H,XIONG J,WEI Z M,QIN W Z,LI W L.Physiological responses of different potato varieties to cold stress at seeding stage[J].Journal of Southern Agriculture,2016,47(11):1837-1843.DOI:10.3969/jissn.2095-1191.2016.11.1837.[百度学术] -
[39]
于海业,乔建磊,肖英奎,张艳平,王淑杰.钙素对雾培马铃薯幼苗抗冷性的影响分析[J].农业机械学报,2010,41(12):72-75,79.DOI:10.3969/j.issn.1000-1298.2010.12.015.[百度学术]YU H Y,QIAO J L,XIAO Y K,ZHANG Y P,WANG S J.Effect analysis of calcium on cold resistance of potato seedlings[J].Journal of Agricultural Machinery,2010,41(12):72-75,79.DOI:10.3969/j.issn.1000-1298.2010.12.015.[百度学术] -
[40]
李华伟,林志坚,许泳清,罗文彬,纪荣昌,刘中华,张鸿,李国良,林赵淼,邱永祥,邱思鑫,汤浩.外源水杨酸对低温胁迫下马铃薯幼苗生理指标的影响[J].分子植物育种,2018,16(10):3321-3326.DOI:10.13271/j.mpb.016.003321.[百度学术]LI H W,LIN Z J,XU Y Q,LUO W B,JI R C,LIU Z H,ZHANG H,LI G L,LIN Z M,QIU Y X,QIU S X,TANG H.Effects of exogenous salicylic acid on the physiological characteristics and growth of potato seedlings under low temperature stress[J].Molecular Plant Breeding,2018,16(10):3321-3326.DOI:10.13271/j.mpb.016.003321.[百度学术] -
[41]
李飞,刘杰,段绍光,金黎平.马铃薯幼苗在冷驯化期间的生理生化变化[J].中国马铃薯,2008,22(5):257-260.[百度学术]LI F,LIU J,DUAN S G,JIN L P.Physiological and biochemical changes of potato seedlings during cold acclimation[J].Chinese Potato Journal,2008,22(5):257-260.[百度学术] -
[42]
FOL GA DO R,SERGEA N T K,R ENAU T J,SW ENN EN R,HAUSMAN J F,PANIS B.Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation[J].Journal of Proteomics,2014:99-111.DOI:10.1016/j.jprot.2013.11.027.[百度学术] -
[43]
ROMERO H M,NORATO R,JESÚS P C.Changes in polyamine content are related to low temperature resistance in potato plants[J].Acta Biológica Colombiana,1999,4(2):27-47.[百度学术] -
[44]
王国莉,陈兆贵,张银枚,龚冠平,文佩玲.三种植物生长物质对马铃薯低温抗冷性的影响[J].惠州学院学报,2018,38(6):21-28.DOI:10.3969/j.issn.1671-5934.2018.06.004.[百度学术]WANG G L,CHEN Z G,ZHANG Y M,GONG G P,WEN P L.Effects of three plant growth substances on low temperature resistance of potato[J].Journal of Huizhou University,2018,38(6):21-28.DOI:10.3969/j.issn.1671-5934.2018.06.004.[百度学术] -
[45]
SCHATZ M C,MARON L G,STEIN J C,HERNANDEZ WENCES A,GURTOWSKI J,BIGGERS E,LEE H,KRAMER M,ANTONIOU E,GHIBAN E,WRIGHT M H,CHIA J M,WARE D,MCCOUCH S R,MCCOMBIE W R.Whole genomede novel assemblies of three divergent strains of rice,Oryza sativa,document novel gene space of aus and indica[J].Genome Biology,2014,15:506.[百度学术] -
[46]
AVERSANO R,CONTALDI F,ERCOLANO M R,GROSSO V,IORIZZO M,TATINO F,XUMERLE L,ALESSANDRA D M,AVANZATO C,FERRARINI A,DELLEDONNE M,SANSEVERINO W,CIGLIANO R A,SALVADO C,GABALDÓN T,FRUSCIANTE L,BRADEEN J,CARPUTO D.The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives[J].Plant Cell,2015,27(4):954–968.DOI:10.1105/tpc.114.135954.[百度学术] -
[47]
ZENG Z,ZHANG W,MARAND A P,ZHU B,JIANG J.Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato[J].Genome Biology,2019,20:123.DOI:10.1186/s13059-019-1731-2.[百度学术] -
[48]
MASSA A N,CHILDS K L,BUELL C R.Abiotic and biotic stress responses in group phureja DM1-3516 R44 as measured through whole transcriptome sequencing[J].Plant Genome,2013,6:3.DOI:10.3835/plantgenome2013.05.0014.[百度学术] -
[49]
EV E R S D,L EGAY S,L A MOU R EU X D,H AUSM A N F J,HOFFMANN L,RENAUT J.Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses[J].Plant Molecular Biology,2012,78(4-5):503-514.DOI:10.1007/s11103-012-9879-0.[百度学术] -
[50]
AULAKH S S,VEILLEUX R E,DICKERMAN A W,TANG G,FLINN B S.Characterization and RNA-seq analysis of underperformer,an activation-tagged potato mutant[J].Plant Molecular Biology,2014,84(6):635-658.[百度学术] -
[51]
GUO X,XU S,CHONG K.Cold signal shuttles from membrane to nucleus[J].Molecular Cell,2017,66(1):7-8.DOI:10.1016/j.molcel.2017.03.010.[百度学术] -
[52]
李广隆,刘思言,鲁中爽,么梦凡,李远强,关淑艳,姚丹,曲静.植物热激蛋白响应非生物胁迫研究进展[J].广东农业科学,2019,46(3):24-30.DOI:10.16768/j.issn.1004-874X.2019.03.004.[百度学术]LI G L,LIU S Y,LU Z S,YAO M F,LI Y Q,GUAN S Y,YAO D,QU J.Research progress of plant heat shock protein response to abiotic stress[J].Guangdong Agricultural Sciences,2019,46(3):24-30.DOI:10.16768/j.issn.1004-874X.2019.03.004.[百度学术] -
[53]
RITONGA F N,CHEN S.Physiological and molecular mechanism involved in cold stress tolerance in plants[J].Plants,2020,9(5):560.DOI:10.3390/plants9050560.[百度学术] -
[54]
PENNYCOOKE J,CHENG H,ROBERTS S,YANG Q,RHEE S,STOCKINGER E.The low temperature responsive,Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications,deletions,and rearrangements[J].Plant Molecular Biology,2008,67:483-497.DOI:10.1007/s11103-008-9333-5.[百度学术] -
[55]
PINO M,AVILA A,MOLINA A,JEKNIC Z,CHEN T.Enhanced in vitrodrought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene[J].Ciencia e Investigacioon Agraria,2013,40:171-184.DOI:10.4067/S0718-16202013000100015.[百度学术] -
[56]
PALMA M D,GRILLO S,MASSARELLI I,COSTA A,BALOGH G,VIGH L,LEONE A.Regulation of desaturase gene expression,changes in membrane lipid composition and freezing tolerance in potato plants[J].Molecular Breeding,2008,21(1):15-26.DOI:10.1007/s11032-007-9105-y.[百度学术] -
[57]
李飞,徐建飞,刘杰,段绍光,卞春松,Jiwan P.PALTA,金黎平.三个耐冻性不同的马铃薯野生种中FAD2基因的克隆及表达分析[J].作物学报,2014,40(1):45-53.DOI:10.3724/SP.J.1006.2014.00045.[百度学术]LI F,XU J F,LIU J,DUAN S G,BIAN C S,PALTA J P,JIN L P.Molecular cloning and expression analysis of fad2 Gene from three wild potato species with different levels of freezing tolerance[J].Acta Agronomica Sinica,2014,40(1):45-53.DOI:10.3724/SP.J.1006.2014.00045.[百度学术] -
[58]
KOU S,CHEN L,TU W,SCOSSA F,WANG Y,LIU J,FERNIE A R,SONG B,XIE C.The arginine decarboxylase gene ADC1,associated to the putrescine pathway,plays an important role in potato coldacclimated freezing tolerance as revealed by transcriptome and metabolome analyses[J].Plant Journal,2018,96(6):1283-1298.DOI:10.1111/tpj.14126.[百度学术] -
[59]
谢洁,王明,丁红映,李青,王万兴,熊兴耀,秦玉芝.马铃薯低温响应的ScmiR390-5p及其靶基因表达与结构分析[J].中国农业科学,2019,52(13):2295-2308.DOI:10.3864/j.issn.0578-1752.2019.13.009.[百度学术]XIE J,WANG M,DING Y H,LI Q,WANG W X,XIONG X Y,QIN Y Z.Expression and structural analysis of ScmiR390-5p and its target genes in potato response to low temperature[J].Scientia Agricultura Sinica,2019,52(13):2295-2308.DOI:10.3864/j.issn.0578-1752.2019.13.009.[百度学术] -
[60]
LEE H E,SHIN D,PARK S R,HAN S,JEONG M,KWON T,LEE S,PARK S,YI B Y,KWON H,BYUN M.Ethylene responsive element binding protein 1(StEREBP1)from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants[J].Biochemical and Biophysical Research Communications,2007,353(4):863-868.DOI:10.1016/j.bbrc.2006.12.095.[百度学术] -
[61]
SHI J,WANG J,WANG N,ZHOU H,XU Q,YAN G.Overexpression of StGA2ox1 gene increases the tolerance to abiotic stress in transgenic potato(Solanum tuberosum L.)Plants[J].Applied Biochemistry and Biotechnology,2019,187:1204-1219.DOI:10.1007/s12010-018-2848-6.[百度学术] -
[62]
MOVAHEDI S,TABATABAEI B E S,ALIZADE H.Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance[J].Biologia Plantarum,2012,56(1):37-42.DOI:10.1007/s10535-012-0013-6.[百度学术] -
[63]
PINO M T,SKINNER J S,PARK E J,JEKNIC Z,HAYES P M,THOMASHOW M F,CHEN T H.Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield[J].Plant Biotechnology Journal,2010,5(5):591-604.DOI:10.1111/j.1467-7652.2007.00269.x.[百度学术] -
[64]
MAALI-AMIRI R,GOLDENKOVA-PAVLOVA I V,YUR'EVA N O.Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium[J].Russian Journal of Plant Physiology,2007,54(5):600-606.DOI:10.1134/S1021443707050056.[百度学术]
-
摘要
马铃薯富含淀粉、蛋白质和维生素等,是我国第四大粮食作物,对于保障国家粮食安全、改善国人膳食营养和促进区域经济发展发挥重要作用。我国马铃薯种植区域主要分为北方一季作区、西南一二季混作区、 中原二季作区和南方冬作区,几乎所有生产区域种植都面临低温胁迫的影响,导致减产甚至绝收。低温胁迫分为冷害胁迫和冻害胁迫,冷害胁迫影响马铃薯的光合作用、根的活性和块茎形成;冻害胁迫导致马铃薯叶茎萎蔫甚至死亡,主茎分枝丛生,长势不齐,易感病菌,严重影响产量。目前关于马铃薯抗寒的研究主要集中在抗寒性评价体系的建立、资源抗寒性评价、抗寒基因的初步挖掘以及抗寒栽培技术等方面,在马铃薯抗寒机制的解析和育种等方面研究进展较为缓慢。从马铃薯抗寒种质资源、生理机制、分子机制以及栽培技术等方面对马铃薯的抗寒性研究进行综述,以期为马铃薯抗寒新品种的选育和产业的高质量发展提供理论依据。
Abstract
Potato is the fourth largest food crop in China. It is rich in starch, protein and vitamins, and it plays an important role in ensuring national food security, improving the dietary nutrition of people and promoting regional economic development. The potato planting areas in China are mainly divided into the northern single cropping area, the southwestern single cropping and double cropping mixed area, the central China double cropping area and the southern winter cropping area. However, almost all production areas are suffering cold stress, resulting in reduced or even complete loss in harvest. Cold stress is divided into chilling stress and freezing stress. Chilling stress can affect the photosynthesis, root activity and tuber formation of potatoes. Under freezing stress, potato leaves and stems wilt and even die, the main stems branch and grow unevenly, and it is subject to susceptible bacteria, which seriously affect the yield. Currently, the researches on potato cold resistance mainly focus on the establishment of cold resistance evaluation system, evaluation of resources cold resistance, preliminary excavation of cold resistance genes and cultivation techniques. The research progresses in the analysis of potato cold resistance mechanism and breeding are still slow. In order to provide theoretical basis for the breeding of new varieties of cold-tolerant potato and the high-quality development of the industry, this review summarized the research on potato cold resistance from the aspects of cold-tolerant germplasm resources, physiological and molecular mechanisms and cultivation technologies.
Keywords
potato ; cold resistance ; germplasm resources ; physiological mechanism ; molecular mechanism