-
我国岭南地区荔枝、龙眼、香蕉、菠萝、芒果、 番木瓜等水果资源丰富,尤其是荔枝、龙眼种植面积约占全国的50%~60%,产量居世界前列。岭南特色水果风味独特、营养价值高,颇受消费者青睐。 然而由于岭南地区地处热带和亚热带区域,高温、 高湿、水果生长期短和含糖量高等,岭南特色水果存在采后代谢旺盛、带菌率高等导致其鲜储货架期短、低温下容易发生冷害等问题,又由于目前保鲜加工技术和能力相对落后,致使现有产业价值低于实际商品价值[1-2]。 岭南特色水果的特性及影响其鲜储的主要因素包括:采收期集中,挂果时间短;果实含水量、含糖量高,生物活性、热敏性强;采收后呼吸代谢旺盛,易褐变,如荔枝素有“一日色变,二日香变, 三日味变”之称;果实不耐低温,低于适温储藏时易发生“冷害”现象;岭南地处热带亚热带,水果采收季节高温、高湿环境导致微生物侵染严重,腐败加剧。岭南特色水果极不耐储的品质特性和地理环境因素使得采后损耗严重,给远距离销售带来重重困难。目前延长岭南水果贮藏期和降低冷害的研究主要包括化学、气调包装、辐照等传统保鲜和新型智能化气调包装、可食性涂抹、微胶囊化天然抗菌、低温等离子体等新型保鲜。 加工是延长产业链,满足消费者对商品多元需求的必要手段。目前岭南特色水果加工专用品种和原料评价标准缺乏:品种多,多以鲜食为主,加工盲目(被动加工);生产自动化程度低:果实形状特殊,机械化脱梗去皮、去核、榨汁等前处理装备缺乏,自动化程度不高;加工及品质控制技术落后: 热敏性强,以传统的热加工技术为主,褐变、风味劣变严重,品质不稳定,能耗高等;产品形态单一: 以罐头和果干为主,难以满足多元化的营养健康需求,整体综合效益不高等产业问题,而推进精深加工是实现水果产业可持续发展的有效途径。目前岭南特色水果加工技术主要包括果干干燥、发酵、果汁加工、副产物综合利用等方面。 因此,加强岭南特色水果保鲜和加工技术的应用研究,对于提高果农收入以及保证岭南特色水果产业健康、可持续发展具有重要意义。
-
1 岭南特色水果保鲜技术及现状
-
1.1 岭南特色水果传统保鲜技术及现状
-
1.1.1 化学保鲜
-
化学试剂常用作水果保鲜处理, 以杀灭病菌、降低呼吸强度、抑制褐变酶的活性等, 从而防止果实腐败及维持可溶性固形物含量[3]。 当前常用化学试剂包括SO2,含氯、钙试剂,O3, H2O2,电解水,有机酸等[4],其中SO2 对荔枝、龙眼等岭南特色水果的保鲜效果最好。Uthairatanakij等[5]发现采用调控SO2释放结合PE袋的模式可明显抑制龙眼采后病原菌的生长,防止果皮褐变和果实腐烂;Reichel等[6]研究表明,0.25 mol/L的草酸、 CaCl2 分别可有效抑制荔枝果皮过氧化物酶活性84%、68%,保证了新鲜荔枝贮藏期(5℃,90%湿度, 21 d)的品质;Alali等[7]在水杨酸(1 mmol/L)和阿拉伯胶(10%)处理香蕉的研究中探明,二者联合处理显著抑制香蕉货架期(20℃,60%~70%湿度, 9 d)的质量损失,其中前者对香蕉硬度以及可滴定酸浓度、后者对果肉/皮的酚类物质以及果皮的颜色具有显著性保护效果。化学试剂虽然对水果保鲜效果显著,但存在化学残留影响安全、pH改变影响口感、风味等问题。德国、荷兰、瑞士等一些国家严禁氯在新鲜果蔬中的使用[4],我国在果蔬保鲜中也严格规定二氧化氯应用于新鲜果蔬中必须低于10 mg/L(GB2760-2014)。 随着我国居民生活水平、消费水平以及健康意识的逐渐提高,化学试剂保鲜法正逐步被市场淘汰, 虽然目前在水果产地由于成本等原因仍被部分果农与果蔬企业采用,但使用的剂量与种类正在慢慢减少,当前常辅助以低温(水、冰、冷库等)作为预冷前处理结合冷链运输、包装等手段,以保证非产地销售的货架期。例如,石淑源等[8]比较了抗坏血酸钠、柠檬酸、臭氧、冷水等处理对荔枝保鲜货架期(17 d)的影响,结果表明3℃、0.3%抗坏血酸钠溶液浸泡处理和3℃冷水浸泡处理后采用PE保鲜袋效果最佳。同时,随着我国科研创新水平的不断提高以及科技服务三农政策的全面实施,物理与生物保鲜手段正逐渐应用于果蔬保鲜产业中(表1)。
-
1.1.2 气调包装保鲜(Modified Atmosphere Packaging,MAP)
-
自1927 年出现第一篇关于气调包装延长苹果货架期的报道,其研究历史已有90 余年,关于水果方面的研究主要集中在1995— 2010 年,目前该技术已成功应用于食品产业[9]。 气调包装保鲜在岭南特色水果的保鲜防腐方面效果显著(表1)。例如,荔枝在1%O2+5%CO2、5(±1)℃的环境中,多酚氧化酶和过氧化物酶的活性得到有效抑制,多酚和抗氧化活性能够有效维持,货架期可延长至35 d[10];荔枝在运输过程中, 采用孔袋包装,调控氧气含量,较无包装形式,显著性控制质量损失率和褐变指数[11];4%O2+5%C O2+91%N2 的气体环境结合3℃低温储藏可显著降低鲜切菠萝褐变酶活性、减缓褐变和Vc氧化, 感官品质保持较好,货架期从4 d可延长至15 d[12]。 Mangaraj等[13]采用聚丙烯和聚氯乙烯的包装膜结合5%O2+5%C O2+N2,调控新鲜荔枝储藏的气体环境,发现多酚氧化酶及过氧化物酶活性被有效抑制、花青素等营养成分得到有效保护,在10℃ 条件下货架期可达17 d。 影响MAP保鲜效果的主要因素包括水果自身特性、储藏温度、气体组成、包装材料。其中,温度因素最为关键,显著影响生鲜水果的呼吸和成熟速率、微生物的生命率,常用的MAP温度为1~8℃; 最常用的气体为CO2、O2、N2;常见的包装膜材料为聚酰胺(PA)、聚乙烯(PE)、聚乙烯对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)等。此外, 单一的气调包装延长货架期有限,与其他保鲜手段有效联合使用也是未来研究的重点。MAP是提高生鲜水果产业价值的有效且极具前景的保鲜手段。
-
1.1.3 辐照保鲜
-
辐照是一种食品加工的物理方法,将包装或未包装的食品置于r射线、x射线或电子加速器产生的电子、电磁场等物理环境下,达到杀菌、消毒、抑制酶活等作用,同时具有速度快、 成本相对低的优势(表1)[14-15]。其中r射线照射是研究最广泛的技术之一,但仍是最未待到充分利用的技术之一。辐照食品已被世界上包括美国的许多国家消费者所认可的市场商品,我国是最大的辐照食品生产国之一,辐照技术在岭南特色水果的防腐保鲜方面也具有显著效果。 Hajare等[16]发现0.5 kGy的r射线处理对荔枝糖类、黄酮类等营养活性成分无影响,然而可显著降低果壳微生物含量,结合4℃低温储藏,有效延长货架期28 d。Mahto等[17]研究证明r射线处理可有效延迟芒果贮藏期(20℃)的成熟、延长货架期至少3~4 d,同时研究表明高强度的辐照对芒果的细胞具有不同程度损伤,致使果皮果肉变硬等, 低剂量的r射线辐照对芒果才有正面保鲜效果。然而,当辐照较弱或单独使用无法达到保鲜效果时, 需联合其他防腐手段共同使用。 辐照与气调包装结合能够消除或减少污染人体的细菌,并在减少辐照剂量的情况下提高微生物杀灭率[14]。由于辐照的这些优势,国际贸易呈现出增长的趋势,预计这种趋势将继续下去。如何更高效利用辐照,减少辐照强度和时间,降低成本的同时,协同增强可联合的其他保鲜技术的防腐效果, 例如将辐照应用于可食性薄膜的开发方面等,是迫切需要研究的重点。
-
1.2 岭南特色水果新型保鲜技术及未来趋势
-
1.2.1 新型智能化气调包装
-
气调包装可以降低鲜活果蔬的呼吸速率、延缓成熟和变色、防止异味和风味的积累,抑制病原体和腐败微生物的生长,从而延长贮藏期(表1)。近几年,研究者们开发采用一些新型技术手段以打破普通气调包装调控有限货架期的局限性,主要为气调包装自身组成因素的改善和联合新型包装技术[18-20]。前者主要包括新型结构聚合物以改善包装膜的材质,新型温敏性功能以智能化调控气体成分,采用抗氧化活性膜、纳米活性膜、生物降解膜、微穿孔膜等以加强包装膜的抗菌、阻隔、强度等功能,非传统的气体成分(氩、 疝气等),非传统的贮藏温度(过冷度贮藏温度); 后者主要包括可食性涂抹、射频识别及成熟度等智能性传感器等。 CO2 和O2 传感器能实时反映新鲜果蔬包装内的气体成分、运输过程中的呼吸环境,以快速判断生鲜果蔬的活性、品质[21]。Mangaraj等[13]采用双向定向聚丙烯(BOPP)和聚氯乙烯(PVC)层压板包装膜以满足荔枝鲜储时的气体要求,结合气体环境的改变与低温,有效延长荔枝贮藏期17 d。 尽管新型智能化气调包装可以大幅度延长新鲜水果的生命期,快速判断生鲜水果的有效货架期,未来仍需进行不断创新:包装材料的再利用、最少化、 环保性等,传感器的进一步智能化使用,与其他保鲜技术进行强强联合。
-
1.2.2 可食性涂抹保鲜
-
可食用涂抹是采用浸渍或喷洒的方法将涂液在水果表面形成屏障薄层,以减少水分从水果表面流失,改变水果周围的空气, 从而减缓水果呼吸作用和衰老速度,抑制微生物, 降低酶活,保证品质(表1)[22]。可食性涂抹液常采用由植物组织中提取的具有抗菌性、抗氧化性等天然成分,例如可食用的果皮中含有的抗坏血酸和柠檬酸可以减少芒果的褐变,从而保持新鲜芒果的颜色[23]。Yousuf等[24]发现150 mL/L的蜂蜜联合50 g/L的大豆分离蛋白保鲜处理可显著保持菠萝多酚等营养成分,极显著保护菠萝色泽、 色相等,延长货架期(4℃)16 d。 壳聚糖是应用最为广泛的涂抹保鲜剂。近些年香精油作为新兴涂抹剂颇受研究者们青睐[22],二者的联合使用和新型壳聚糖的应用是当前的研究热点。Braga等[25]发现5 g/L壳聚糖和0.6、1.2 mL/L薄荷油组成的可食性涂抹液显著延缓了木瓜冷藏期果肉和果皮颜色的转变,降低了酶活和质量损失, 且在口感上接受度良好,无任何负面效应。Zahedi等[26]研究表明含抗坏血酸的壳聚糖涂抹可显著提高芒果储藏期(24 d,15±2℃,85%~90%湿度) 的抗氧化性,延长其货架期。Jiang等[27]应用新型壳聚糖(卡多赞,1 ∶ 100 稀释)涂抹荔枝,能够显著降低呼吸速率和质量损失,抑制果壳褐变,延长货架期。 可食性涂抹保鲜处理方便、快捷,是一项极具前景和市场的技术,同时与其他技术如 γ 射线辐照处理、超声波处理、纳米技术等联合使用,具有协同增效的作用甚至消除单一技术的负面保鲜效应[28-30]。值得注意的是,涂抹保鲜剂的安全性是该技术的基础与重点。目前市面上有一些涂抹保鲜剂公司,部分商业涂抹保鲜剂并未得到科学证实, 因此需进行科研分析,以保证安全性和有效性[22]。 基于经济成本、水果多样性以及消费者健康需求的角度,我们在不断发掘可食性涂抹保鲜处理与其他技术协同增效使用的同时,对安全、实惠、有效的涂抹材料仍需进行不断开发。
-
1.2.3 微胶囊化天然抗菌剂
-
植物精油、植物提取物(酚类等)等是天然抗菌剂和抗氧化剂,对生鲜果蔬的保鲜具有突出效果,然而却因这类物质难溶于水、稳定性相对较差、易挥发、易氧化等缺点限制其应用,微胶囊技术可以有效控制其有效成分的缓慢释放,从而达到长效保鲜效果[31-32]。微胶囊技术是利用成膜材料或聚合材料作为壁材将需要保护的芯材包埋形成微小粒子,能显著提高芯材的稳定性,延长使用寿命,便捷操作,并能在时间和空间上控制芯材的使用(表1)[33]。龙门等[34]利用三聚磷酸钠为交联剂,制备茶树精油-壳聚糖微胶囊,发现茶树精油微胶囊化显著提高茶树精油的稳定性,具有更稳定的体外杀菌性和抗氧化性,释放速度可有效控制。Yin等[35]研究指出加入壳聚糖-肉桂精油微胶囊的涂膜(+ 海藻酸钠)显著延长芒果的货架期(25℃,50%湿度),延缓其腐烂, 保持Vc等营养成分,降低呼吸速率,减少质量损失,保存14 d后仍具备商品价值。Gong等[36]以 β环糊精作为壁材,以丁香酚为芯材,通过饱和水溶液法制备了丁香酚微胶囊,显著降低了荔枝果实贮藏60 d后的腐烂和抑制荔枝霜疫霉菌的侵染。Mo等[37]采用乳液交联法包埋富马酸二甲酯(DMF), 联合壳聚糖以及香兰素,制备了一种绿色缓释生物材料,DMF在微球中前期释放速度较快,随后进入平稳期,显著降低鲜荔枝在储藏期的质量损失, 保证了荔枝品质。 影响微胶囊化天然抗菌剂功效发挥的主要因素包括壁材的特性、微胶囊化的工艺、芯材之间的协作交联性等。不同壁材材料的选择及制作对芯材的抗菌效果影响显著,例如Li等[32]研究评价了麦芽糊精/阿拉伯胶(MD/GA)、麦芽糊精/明胶(MD/GEL)、麦芽糊精/明胶、壳聚糖(MD/CHI)和麦芽糊精/环糊精/阿拉伯胶(MD/cd/GA)这4 种壁材对李子酚微胶囊化的包埋效果,以MD/CHI的包埋稳定性最强,25℃存储60 d后酚类物质的保留率仍高达94.6%。微胶囊制备工艺主要包括喷雾干燥、冷冻干燥、层层自组装、复凝聚法,皆存在各自的优缺点,未来可从技术的协同使用、新技术的开发等方面以提高微胶囊的制备效率[31]。微胶囊可通过可食性涂抹、复合机纸保鲜材料、复合膜保鲜材料的形式应用于水果保鲜中,如何高效利用, 包括与MAP、EC、超声、超高压等其他技术的联合使用,亦是未来研究的重点。
-
1.2.4 低温等离子体保鲜
-
低温等离子体是气体在高电压、高温、电场、磁场、电磁场状态下产生的异于固、液、气三态的原子、离子、电子等粒子集合体,这种第四态粒子具有活性能量高、杀菌速度快、温度低、无副产物、保护品质等优点(表1)[38]。 CP加工过程中的低温和活性颗粒对降低食品营养物质的损失和生物大分子的改性具有重要作用,可有效杀灭鲜活水果表面微生物、降低农残、钝化酶活、延缓变软等,从而保证水果质量和延长贮藏期[39-40]。Sarangapani等[41] 采用CP(80 kV,1~5 min)处理蓝莓,发现蓝莓表面的农残有效降解80%,多酚、黄酮类物质含量显著增加。陈姝伊等[42] 研究指出香蕉经CP(20 kV,5 kHz)结合加湿(RH 90%)处理后,极显著降低了香蕉果实包装环境中的乙烯和CO2 含量,减缓了后熟过程,增强了对冷害的抗性,同时维持较高香蕉果皮硬度。 CP作为一种新型非热绿色保鲜技术,在保护水果原有营养品质的同时,安全无污染地延长货架期。但仍需进行不断改进,尤其是对鲜活水果,如过敏原、水果表面的农药残留、调控沉积化合物从包装材料到新鲜水果的迁移、活性等离子体与水果活性物质、预定目标相互作用的机制等。此外,低温等离子体与其他工艺(如壳聚糖)的组合技术可能是未来的突破口。低温等离子体技术的商业化应用仍需相当长一段时间,在设备尺寸、规模化效果方面需进一步突破。
-
2 岭南特色水果加工技术及现状
-
2.1 岭南特色水果干燥加工技术
-
干燥加工是现阶段广东省快速消耗岭南大宗特色水果原料、延长产品货架期、赋予产品特殊风味和口感的主要加工技术之一[43]。荔枝、龙眼等岭南特色水果的干制加工方式主要以热风干燥、热泵干燥和冷冻干燥加工技术为主,技术研究则多出现红外、热泵、真空微波、热风-微波、热风-真空冷冻等新型干燥或组合干燥技术,不同干燥技术其过程能耗、效率各有优劣,对产品品质、风味色泽的影响区别也较大。
-
2.1.1 热风干燥
-
热风干燥是目前最常用且最传统的干燥技术,通过热量传递,水分发生扩散,获得干制品。其存在能耗大、干燥不均匀、营养色泽损失大、产品品质较差等缺点,如Sehrawat等[44]通过研究发现热风干燥对芒果片品质的影响比其他任何干燥方法更为明显。但热风干燥具有设备简单、 操作便捷、成本低廉、干燥处理量较大、速度较快等优势[45],工业化生产中热风干燥仍为主要的干燥方式之一,因此有许多研究以期通过优化风速、温度等工艺参数来提高干燥效率和产品品质(表2)。吴炜俊等[46]通过研究不同组合渗透、 冷冻前处理结合热风干燥对蓝莓干燥品质的影响, 发现渗透和冷冻-解冻前处理模式二者结合能协同显著提升干燥速率和干燥产品品质,较未前处理组脱水速率、硬度保留率、总酚含量保持率分别提高36.91%、9.09 倍、100.74%,原因是渗透、冷冻-解冻能改变细胞膜通透性,促进干燥过程中的传热传质,从而提升干燥速率、改善产品品质。Braga等[47] 研究发现高强度脉冲紫外线预处理结合热风干燥能有效提升芒果干干燥效率并有效提高维生素C、类胡萝卜素、维生素B1 和B3 等营养成分的保留率。 热风干燥在岭南特色水果方面的应用较为普遍,其产品包括市场上常见的荔枝干、龙眼干、芒果干等。 当下,可采用他手段联合使用以改善传统单一热风干燥所造成的品质缺陷,同时节省成本。
-
2.1.2 热泵节能干燥
-
热泵干燥是通过压缩机制热循环从低温热源获取能量,在高温条件作为有效热能进行使用的一种干燥方式,能够有效利用热源, 不仅能较好地保留物料中的热敏性物质,还具有“高效节能、环境友好”优势,能够较好地保留水果中各种营养成分,具有节能、环境友好和安全稳定、 干燥产品品质较好等优点(表2),如温靖等[48] 发现热泵干燥龙眼的褐变程度及营养成分损失率要显著低于热风干燥。
-
但如何有效提高能源利用率、提高热泵干燥效率、提升产品品质仍是目前热泵干燥领域的研究热点。彭健等[49]阐明了分段式远红外-热泵干燥龙眼的质构特性、褐变程度及影响褐变的主要机制。 程丽娜等[50]研究发现干燥介质中CO2 浓度对荔枝干成品的多酚、多糖、可滴定酸、色差值、果壳的抑菌效果影响显著,其中热泵干燥温度60℃、干燥介质中CO2 浓度为5%时得到的荔枝干品质最优。
-
2.1.3 冷冻干燥
-
冷冻干燥将物料中水分通过冰晶升华除去,以保证产品质量。近年来对于冷冻干燥前处理及联合干燥技术工艺优化,如何控制适宜的冷冻速率和调节冰晶成核使其同时满足质量和能耗的需求等是国内外学者和工业界的研究重点(表2)。Salazar等[51]发现在较高的冷冻速率下干燥时间能缩短30%,在压强为66.66~86.65 kPa、 温度为-2~0℃、冷冻速率0.4℃/min的工艺下冷冻干燥得到的芒果干品质最高。Apinya等[52]通过开发动态红外辅助冷冻干燥系统,研究红外辅助冷冻干燥香蕉片的干燥效率及其对品质的影响,确证红外辐射可作为冷冻干燥升华阶段的驱动力,持续红外辐照干燥时间可显著缩短干燥时间213 min,节省干燥时间超过70%,并能有效改善产品的脆度。 杨佳琪等[53]优化了冷冻-热风联合干燥香蕉片的工艺参数,发现冷冻时间3 h、中间转换点含水率40%、热风温度70℃时,香蕉片的产品外形及营养品质接近冻干产品,干燥时间可节省将近1/4。 冷冻干燥与其他手段的联合使用,在缩短干燥时间、降低成本的同时,保证干制品的质量,这将是岭南特色水果采用冷冻干燥手段干制的主要模式。如何更进一步降低冷冻干燥能耗,包括设备的改进、物料干制工艺的优化等,将是未来科研工作者的研究重点。
-
2.1.4 联合干燥
-
两种或两种以上的联合干燥技术因具有低能耗、低污染、易操控、高效率、高品质的特点,更适合规模的工业化生产,成为近年来研究应用的重点[54],并已被越来越多的果蔬干燥行业采用,将是未来发展的趋势(表2)。目前常见的联合干燥方式有微波-热泵组合、辐照超声组合、 热风-热泵组合、热风-冷冻组合、热风-真空组合、冷冻-微波-热风/真空、冷冻-微波-热风-真空等联合干燥方式。 Yi等[55]研究了热风、冷冻联合压差膨化干燥对芒果、火龙果和番木瓜脆片品质的影响,结果表明,不同干燥技术与压差膨化联合会对芒果、火龙果和番木瓜3 种脆片质构品质造成显著影响,冷冻联合压差膨化干燥脆片具有优于其他干燥方式的质构、色泽和感官品质。安可婧等[56]通过研究间歇微波、变功率微波结合真空微波干燥龙眼,从功率密度、真空度、装载量3 方面分析龙眼果肉在真空微波干燥过程中水分比及干燥速率的变化,确定功率密度12 W/g、真空度90 kPa、装载量100 g为龙眼间歇真空微波最佳干燥工艺。适宜不同物料特性的联合干燥将是岭南特色水果干的主要干制模式。
-
2.2 岭南特色水果发酵加工技术
-
2.2.1 果酒发酵技术
-
发酵型果酒酿造中风味分析、甲醇、杂醇油的调控以及复合果酒发酵工艺优化等为果酒的主要研究热点。果酒发酵技术主要采用葡萄酒加工工艺并根据水果的特性进行改进。为减少传统果酒发酵中二氧化硫残留,提高果酒的品质(表2)。邓莎莎等[57]将新型果汁饮料防腐剂(INS号242)二甲基二碳酸盐(DMDC)用于荔枝果酒和茶枝柑果酒的发酵前处理,发现DMDC能有效杀灭果酒发酵过程中的杂菌,减缓果酒pH下降和可滴定酸升高,提高糖的有效利用率和乙醇得率, 抑制高级醇的产生。在荔枝果酒发酵中,DMDC对杂酵母、乳酸菌和霉菌的杀菌能力显著强于亚硫酸盐[58]。由此可见,DMDC可以代替或部分代替亚硫酸盐在岭南特色果酒中推广应用。 高级醇也叫杂醇油,在果酒中存在微量的高级醇可增加酒的风味,但过量产生则影响酒的品质。 周青等[59]研究发现,在桑椹酒发酵过程中,高级醇浓度随果渣添加量的增加先减少后增加,3-甲基丁醇、2-甲基丁醇在300 g果汁中添加50 g果渣时浓度最低,异丁醇则在添加75 g时浓度最低。 多糖、酵母的种类、外加氮源等对果酒的品质也有重要影响。曾悦等[60]研究发现,在荔枝汁中添加250 mg/L Optired酵母多糖,酿制而成的果香酒精度可达12.8%,酒香浓郁协调,口感醇厚,圆润丰满,可显著提高荔枝酒感官品质,同时可较好地保护荔枝汁中酚类物质并明显延缓其褐变进程, 在贮藏过程中能有效保持香气、色泽、新鲜度等感官质量的稳定性。刘延波等[61]通过响应面试验设计优化菠萝梨复合果酒发酵工艺,得到菠萝梨酒的最佳发酵工艺条件为初始糖度23.8%,酵母添加量0.08%,果胶酶添加量121 mg/L,菠萝梨酒酒精度可达12.8%,可有效改善菠萝果酒风味。林丽静等[62]研究了以菠萝皮渣和糯米为原料发酵菠萝糯米酒,并分析发酵过程中可溶性固形物、酒精度、 有机酸、挥发酸和香气成分等成分变化,发现复合发酵能够有效降低菠萝皮渣发酵酒中有机酸和挥发酸的含量,使酒样口感更圆润柔和,酸度更协调。 酿造工艺的改进和外源物的适宜添加是提升果酒品质的有效途径,亦是科研工作者们的研究重点。
-
2.2.2 果醋加工技术
-
与我国传统粮食醋的固态/半固态发酵方式不同,果醋的工业化生产多采用液态深层发酵。目前市场上成熟的岭南特色水果果醋主要有荔枝醋、菠萝醋等产品,国内外有关果醋醋酸发酵工艺及关键点的研究较多(表2)。 吴继军等[63]发明了一种自吸式液态果醋加工设备,既能有效溶氧又能减少醋酸的挥发,提高了液态果醋产品的得率和质量。朱伟林等[64]研究了同时接种酵母和醋酸菌对联合发酵龙眼醋,发现较酵母和醋酸菌独立发酵的传统工艺,发酵时间要显著缩短24 h,乙酸含量可达28.09 g/L,并更好地保留龙眼多酚、抗坏血酸等活性成分,果醋色泽同样优于独立发酵。尹爱国等[65]以龙眼和柠檬复合果汁发酵复合龙眼果醋,研究发现在发酵温度33℃、 基酒初始酒度10%、醋酸菌接种量12%,得到龙眼果醋总酸可达每100 mL 6.80 g,可有效改善单一龙眼发酵果醋风味不足,表现出其独特风味。 发酵菌种、发酵物料初始特性、温度、发酵方式,以及发酵设备的改进是影响发酵果醋品质的主要因素,亦是提升果醋品质的重要途径。
-
2.2.3 乳酸菌发酵加工技术
-
近年来,将益生功能与水果色泽、风味、营养品质等特性相结合设计多样化的发酵果汁活菌产品越来越受到消费者的青睐,相关岭南特色水果的乳酸菌发酵工艺、功能特性及其对果汁感官品质的影响研究,开发活菌型的发酵果汁产品是近年来的研究热点(表2)。 郑欣等[66-67]研究发现,荔枝汁非常适合各种乳酸菌的生长,其中肠膜状明串珠菌荔枝汁中糖的转化能力最强,降幅约为78%;在多酚和色泽保留率方面显著优于其他乳酸菌种;并指出干酪乳杆菌和保加利亚乳杆菌发酵的荔枝汁,胞外多糖含量高于37.5 g/L,贮藏期间的稳定性增强;但经过4℃ 低温贮藏4 周后,肠膜状明串珠菌的活菌数降至7.0 对数以下,而干酪乳杆菌和保加利亚乳杆菌仅下降不到0.5 log。 刘磊等[68]采用渐进驯化法获得在高浓度龙眼果浆中具有良好发酵性能的乳酸菌,并建立了龙眼果浆乳酸菌发酵的优化工艺条件(发酵时间12 h、 发酵温度45℃、脱脂奶粉添加量5%、接种量3%), 解决了乳酸菌在高浓度果浆中发酵性能差的难题。 陈晓维等[69]采用酵母和巴氏醋杆菌进行连续发酵开发了龙眼枸杞糙米复合发酵饮料。Chen等[70]表明鼠李糖杆菌和木醋杆菌联合发酵显著提升乳酸、 乙酸和胞外多糖含量,增加酮类挥发性成分,降低苦涩味氨基酸含量,有效改善发酵复合(雪莲果-荔枝-龙眼)果汁的风味。邹颖等[71]发现酵母菌乳酸菌共发酵可显著改善荔枝汁风味,提升产品营养功能特性,并显著高于单一菌种发酵。Wen等[72] 研究了不同乳酸菌发酵制备荔枝汁,发现干酪乳杆菌发酵品质最佳,其多酚、黄酮、多糖含量相比荔枝原汁分别提高63%、1.2 倍、9.6 倍,并具有较好的肠道益生功能。 除荔枝等适宜乳酸菌生长的水果外,岭南地区还有许多酸度较高的水果如青梅、李子等,以及抑菌能力较强的水果如桑椹、蓝莓。胡丽云等[73]采用富集分离的方法从青梅中分离了一株能在厌氧条件下快速降解柠檬酸的乳酸菌株,16s rDNA鉴定后发现该菌为发酵乳杆菌(Lactobacillus fermentum)。 进一步研究发现,该菌株能在以柠檬酸为主要碳源和能源的基础培养液中进行发酵生长,在转化利用柠檬酸的过程中仅产生少量的乙酸和乳酸,将该菌株应用到青梅蜜饯降酸中,青梅果胚的硬度、色泽和其他营养物质保留较好,大大减少高盐高酸废水的排放[74]。将该菌株应用到柑橘汁中,发现其生长速度很快,发酵6 h后,柑橘汁中的柠檬酸全部代谢,产生少量乙酸和乳酸[75]。此外,该菌株还能有效利用苹果酸,在三华李果汁中,发酵乳杆菌缓慢生长,发酵6 d后菌种数量趋于稳定;发酵期间菌株对糖的利用较缓慢,仅利用少量的葡萄糖维持代谢生长,而对苹果酸的消耗较快,使得三华李汁的pH值快速上升,可滴定酸含量迅速下降,8 d后苹果酸被完全消耗[76]。岭南地区种植的桑椹因气候原因,糖度较低,酸度较好,且富含花色苷、 绿原酸等抑菌物质,常规商业乳酸菌难以生长。李丰廷等[77]从自然发酵的桑椹浆中筛选并鉴定其为植物乳杆菌,在30℃厌氧发酵下,该菌株能很好的适应桑椹,发酵后3 d活菌数量稳定在109 CFU/mL以上并产生大量乳酸,发酵7 d后乳酸含量从0.21 g/L增加到15.25 g/L。 岭南特色水果因其独特风味、丰富营养,非常适宜于乳酸菌发酵产品的开发,适宜的发酵菌种、 发酵工艺、物料的联合发酵是改善其发酵品品质的主要因素。
-
2.3 岭南特色水果果汁加工技术
-
2.3.1 传统热杀与化学杀菌技术
-
目前商业化的杀菌包括热杀菌和化学杀菌。传统热杀菌技术主要有超高温瞬时杀菌技术、巴氏杀菌技术等,果汁加工工业化上主要体现为超高温瞬时杀菌技术结合无菌灌装、巴氏杀菌则是结合无菌罐装及冷链储运销售来确保产品达到商业无菌的要求;热杀菌虽然杀菌效果显著,但会改变果汁色泽、产生热臭的异味、 香气损失、营养破坏,从而影响了果汁的质量[78]。 近年来化学杀菌技术发展比较迅速,在许多国家使用许可,在各种果汁饮料中得到广泛应用,主要优点表现为可实现低温杀菌、杀菌效果好,无异味,可分解为果汁天然成分,成本低廉,适用于各类包装[79],果汁的口味、气味或颜色不受影响, 尤其适合于岭南特色果汁杀菌(表2)。 随着人们对营养健康的需求越来越高以及生活水平的逐渐提升,传统杀菌方式将会被未来市场淘汰,新型非热杀菌所获得高品质“零标签”果汁产品将是未来市场主流。
-
2.3.2 新型非热杀菌技术
-
非热杀菌技术是利用光、压力、电子、磁场、波等非加热方式去除或杀灭有害细菌和微生物,使物料达到商业无菌要求的技术。该技术不仅有利于保持食品中的生物活性物质及保护食品的色、香、味及营养物质不被破坏或降解,还非常适合于处理热敏性物料。现阶段研究较多的物理非热杀菌技术主要有超高压杀菌、高压脉冲电场杀菌、光动力杀菌、超声波杀菌、电磁场杀菌、等离子体杀菌等(表2)。(1)超高压杀菌技术。超高压杀菌技术指在常温或较低温度下将100 MPa以上静态压力持续作用于果汁物料,达到抑制酶活、杀菌和改善物料结构的过程,而果汁的天然色泽、风味和营养价值等不受影响的一种非热杀菌处理技术。郑欣等[80]报道香蕉汁在25℃下经500 MPa超高压处理2 min后可基本杀灭微生物,且贮藏8 周后果汁中菌落总数、 霉菌和酵母检出量均小于10 CFU/mL,可溶性固形物含量、pH、可滴定酸均未有显著性变化。徐玉娟等[81]研究表明,在40℃环温下,500 MPa超高压、保压10 min处理荔枝汁,即可确保荔枝汁达到商业无菌效果,并能一定程度钝化酶活,且最大程度保留荔枝风味物质营养成分。Nishant等[82]研究了400~600 MPa、30~60℃、0~15 min处理对荔枝-芦荟复合果汁品质的影响,发现不同压力及保压时间对复合果汁色泽、维生素C、多酚等活性成分的影响较小,均能有效钝化PME、PPO、POD,56℃ 下600 MPa保压15 min为最佳工艺条件,PME、 PPO、POD活性可分别钝化54%、72%、82%。 超高压对果汁体系中的PPO等耐压酶无法完全钝化,处理后的货架期有限,常与冷链相结合。 超高压处理亦可与其他手段相结合,达到杀菌灭酶彻底的效果。目前超高压非热加工技术商业化应用日趋成熟,广东省农业科学院蚕业与农产品加工研究所建立了1 条50 L超高压杀菌技术中试生产线, 广州市从化华隆果菜保鲜有限公司建立了300 L超高压杀菌工业化生产线。(2)高压脉冲电场杀菌技术。高压脉冲电场杀菌技术是一种新型非热食品杀菌方法,是当前研究较为热门的非热杀菌技术之一,以较高的电场强度(10~50 kV/cm)、较短的脉冲宽度(0~100 μs) 和较高的脉冲频率(0~2000 Hz)处理果汁等液体物料,当高强电场在极短时间内作用于微生物,其受到细胞膜破裂、细胞组织受损等不可逆破坏, 从而失活死亡[83],适用于荔枝、龙眼、芒果、菠萝等热敏性岭南特色水果加工。但目前对与高压脉冲电场杀菌技术在岭南特色水果加工中的研究和应用报道较少。方婷等[84]研究对比了荔枝原汁、 巴氏杀菌荔枝汁、高压脉冲电场处理的浓缩荔枝汁-18℃下贮藏期间的微生物变化情况,发现低电导率更有利于高压脉冲电场处理,脉冲电场处理后能较好地杀灭微生物。
-
2.4 新型浓缩加工技术
-
现阶段工业化生产及科学研究涉及较多的浓缩技术包括热真空浓缩技术、薄膜浓缩技术以及冷浓缩技术、水合物浓缩等新型低温浓缩技术,真空热浓缩为工业化最常用的浓缩技术,无法应用于热敏性亚热带水果,特别是荔枝汁的浓缩,而薄膜浓缩则不太适合高糖高粘的荔枝、龙眼等岭南特色水果, 而国内关于荔枝、龙眼等岭南特色水果冷冻浓缩、 水合物浓缩等低温浓缩技术的研究报道大多处于中试、小试阶段(表2)。 赵芳等[85]研究对比了真空浓缩和结冰-解冻浓缩对荔枝汁风味的影响,结冰-解冻浓缩法得到浓缩汁的挥发性风味物质种类和数量丰富,无煮熟味,基本保留了荔枝的原有风味。朱云婷等[86]研究发现荔枝汁通过先冷冻浓缩再发酵的工艺可以生产出更高品质的荔枝酒,浓缩发酵荔枝酒的醇酯比为0.26,果香浓郁,口感甜润饱满,酒体醇厚。 浓缩汁是果汁市场流通的重要单元,研究适合于热敏性强、粘度高的岭南特色水果果汁的低温浓缩技术,可以促进岭南特色水果加工产品的世界流通性,提升产业价值。
-
2.5 岭南特色水果副产物综合利用
-
岭南特色水果中荔枝、龙眼果皮、果核和果渣以及菠萝的皮渣均为鲜食或生产加工后的副产物, 含量均达全果的50%或以上,研究显示,荔枝、 龙眼果皮和果核富含原花青素和其他酚类物质,具有抗氧化、降血糖等功能[87],菠萝皮渣中的营养成分与果肉的差别也较小[88]。果核、果皮、果渣等副产物大量废弃不仅污染环境,更重要的是浪费大量资源。目前广东省农业科学院蚕业与产品加工研究所、华南理工大学等省内科研院校开展了相关研究,建立了龙眼核中抗氧化多酚功能成分制备技术,建立了荔枝龙眼多糖、多酚、花青素、原花青素等活性物质高效制备技术及其稳态化应用关键技术,建立了菠萝浓缩汁副产物综合利用技术和工业化节能新方法,解决副产物综合利用难和附加值低的问题,实现了荔枝、龙眼等岭南特色水果高值化加工利用(表2)。 Chen等[89]结合FT-ICR-MS分析和多种体外抗氧化活性评价方法,筛选出龙眼核中对总抗氧化能力贡献最大的功能组分(2-羟基-3-甲氧基咖啡酸-5-O-β-D-吡喃葡萄糖苷(结构式A)、3′-O甲基-4′-O-(4-O-没食子酰基-α-L-吡喃鼠李糖基)鞣花酸(结构式B),建立了龙眼核多酚强抗氧化功能性成分的制备技术。龚小洁等[90]优化了干酪乳杆菌在荔枝果渣中的发酵条件,发现NaOH调节其pH到6.0 并添加3 g/L的碳酸钙灭菌后的荔枝果渣非常适合乳酸菌生长,30℃下静置发酵24 h后乳酸菌活菌数即可达到8.0(lg)CFU/g, 可以开发荔枝果渣功能食品基料。杨正楠等[91]研究菠萝皮渣发酵饲料的发酵特性及发酵对其营养的改善,结果表明,菠萝皮渣发酵饲料可降低中性洗涤纤维素含量8.3%、酸性洗涤纤维素含量6.9%, 粗蛋白含量降至5.4%,三氯乙酸(TCA)蛋白含量可提高至0.86%,可有效提高菠萝皮渣的利用率。 将富含营养成分、活性成分的副产物加工再利用, 变废为宝,保护环境的同时提升产业价值。如何进行高效富集利用,包括加工技术、活性成分挖掘、 产品开发,是未来研究工作的重点,以支撑产业可持续健康发展。
-
3 展望
-
岭南特色水果营养丰富,生鲜食用和加工产品都颇受消费者青睐,且随着经济的快速发展和消费水平的不断提升,高品质的水果产品市场空间巨大。 快速有效的保鲜和加工技术是水果产业增值的必要助力手段。然而,目前保鲜技术与应用力度均不足, 初加工装备需提升,深加工产品少。因此,在不断改进现有传统保鲜、加工技术的同时,需进一步加大创新力度,研发新型技术和开发新装备,注重技术之间的协同增效效应,以期为岭南特色水果产业提供理论指导、技术支撑。
-
(责任编辑 邹移光)
-
徐玉娟,博士,二级研究员,广东省农业科学院蚕业与农产品加工研究所所长,广东省优稀水果产业技术体系首席专家,兼任农产品加工省部共建国家重点实验室培育基地副主任、 热带亚热带果蔬加工国家地方联合工程研究中心副主任、广东省农产品加工重点实验室副主任,广东省食品学会农产品加工分会主任。 从事果蔬保鲜与加工研究工作20 余年,先后主持承担国家 “十二五”科技支撑计划、国家公益性行业科技专项、 广东省自然科学基金团队和重点项目等各级科技项目30 余项;获省级以上成果奖13 项,其中省部级一等奖6 项、二等奖5 项,广东省农业技术推广一等奖5 项。荣获国家“万人计划”科技创新领军人才,国务院政府特殊津贴专家, 全国先进工作者,科技部创新人才推进计划中青年科技创新领军人才,全国第四届巾帼发明家新秀奖,全国“三八” 红旗手,广东省特支计划中青年科技创新领军人才,第十三届广东省丁颖科技奖、江西省“双千计划”人才等称号。 申请发明专利45 项,其中获授权36 项,参编著作5 部(编委),发表论文138 篇,其中第一作者或通讯作者论文55 篇。
-
参考文献
-
[1]
曾蓓,吕建秋,谢志文,车大庆,周绍章,王泳欣,李翠芬.广东省荔枝加工企业发展现状及对策建议——以粤西、粤东荔枝加工龙头企业为例[J].农业科技管理,2019,38(4):81-85.DOI:10.16849/J.CNKI.ISSN1001-8611.2019.04.023.[百度学术]ZENG B,LYU J Q,XIE Z W,CHE D Q,ZHOU S Z,WANG Y X,LI C F.Development status and countermeasures of litchi processing enterprises in Guangdong province,taking the leading enterprises of litchi processing in western guangdong and eastern Guangdong as an example[J].Management of Agricultural Science and Technology,2019,38(4):81-85.DOI:10.16849/J.CNKI.ISSN1001-8611.2019.04.023.[百度学术] -
[2]
齐文娥,陈厚彬,罗滔,宋凤仙.中国大陆荔枝产业发展现状、 趋势与对策[J].广东农业科学,2019,46(10):132-139.DOI:10.16768/j.issn.1004-874X.2019.10.020.[百度学术]QI W E,CHEN H B,LUO T,SONG F X.Development status,trend and suggestion of litchi industry in mainland china[J].Guangdong Agricultural Sciences,2019,46(10):132-139.DOI:10.16768/j.issn.1004-874X.2019.10.020.[百度学术] -
[3]
RAMOS B,MILLER F A,BRAND O T R S,TEIXEIRA P,SILVA C L M.Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety[J].Innovative Food Science & Emerging Technologies,2013,20:1-15.DOI:10.1016/j.ifset.2013.07.002.[百度学术] -
[4]
DE CORATO U.Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry:A comprehensive critical review from the traditional technologies into the most promising advancements[J].Critical Reviews in Food Science and Nutrition,2020,60(6):940-975.DOI:10.1080/10408398.2018.1553025.[百度学术] -
[5]
UTHAIRATANAKIJ A,JITAREERAT P,PHOTCHANACHAI S,IEAMTIM P,ERKAN M,AKSOY U.Combined treatments of sulfur dioxide and polyethylene bags on the quality and disease incidence in Gamma irradiated longan fruit 'Daw'[R].VI International Postharvest Symposium,2010.[百度学术] -
[6]
REICHEL M,WELLHOFER J,TRIANI R,SRUAMSIRI P,CARLE R,NEIDHART S.Postharvest control of litchi(Litchi chinensis Sonn.)pericarp browning by cold storage at high relative humidity after enzyme-inhibiting treatments[J].Postharvest Biology and Technology,2017,125:77-90.DOI:10.1016/j.postharvbio.2016.10.002.[百度学术] -
[7]
ALALI A A,AWAD M A,AL-QURASHI A D,MOHAMED S A.Postharvest gum Arabic and salicylic acid dipping affect quality and biochemical changes of ‘Grand Nain’ bananas during shelf life[J].Scientia Horticulturae,2018,237:51-58.DOI:10.1016/j.scienta.2018.03.061.[百度学术] -
[8]
石淑源,董成虎,张佳楠,卢晓辉,陈存坤.五种浸泡处理结合两种包装对妃子笑荔枝冷藏期间褐变程度的影响[J].食品与发酵工业,2020:1-6.DOI:10.13995/j.cnki.11-1802/ts.024976.[百度学术]SHI S Y,DONG C H,ZHANG J N,LU X H,CHEN C K.Effects of five soaking treatments combined with two kinds of packaging on browning “Feizixiao”litchi during cold storage[J].Food and Fermentation Industries,2020:1-6.DOI:10.13995/j.cnki.11-1802/ts.024976.[百度学术] -
[9]
ZHANG M,MENG X,BHANDARI B,FANG Z.Recent developments in film and gas research in modified atmosphere packaging of fresh foods[J].Critical Reviews in Food Science and Nutrition,2016,56(13):2174-2182.DOI:10.1080/10408398.2013.819794.[百度学术] -
[10]
ALI S,KHAN A S,MALIK A U,SHAHID M.Effect of controlled atmosphere storage on pericarp browning,bioactive compounds and antioxidant enzymes of litchi fruits[J].Food Chemistry,2016,206:18-29.DOI:10.1016/j.foodchem.2016.03.021.[百度学术] -
[11]
吕恩利,陆华忠,杨松夏,赵俊宏,田庆立.气调运输包装方式对荔枝保鲜品质的影响[J].现代食品,2016,32(4):156-160,93.DOI:10.13982/j.mfst.1673-9078.2016.4.025.[百度学术]LYU E L,LU H Z,YANG S X,ZHAO J H,TIAN Q L.Effects of packaging methods on fresh-keeping quality of litchi during controlled atmosphere transport[J].Modern Food Science and Technology,2016,32(4):156-160,93.DOI:10.13982/j.mfst.1673-9078.2016.4.025.[百度学术] -
[12]
方宗壮,何艾,窦志浩,段宙位,王世萍,谢辉.不同气调包装结合低温处理对鲜切菠萝贮藏品质的影响[J].河南工业大学学报(自然科学版),2018,39(4):102-107.DOI:10.16849/J.CNKI.ISSN1001-8611.2019.04.023.[百度学术]FANG Z Z,HE A,DOU Z H,DUAN Z W,WANG S P,XIE H.Effect of different modified atmosphere packaging treatments with low temperature on storage quality of fresh-cut pineapple[J].Journal of Henan University of Technology(Natural Science Edition),2018,39(4):102-107.DOI:10.16849/J.CNKI.ISSN1001-8611.2019.04.023.[百度学术] -
[13]
MANGARAJ S,GOSWAMI T K,GIRI S K,TRIPATHI M K.Permselective MA packaging of litchi(cv.Shahi)for preserving quality and extension of shelf-life[J].Postharvest Biology and Technology,2012,71:1-12.DOI:10.1016/j.postharvbio.2012.04.007.[百度学术] -
[14]
BARKAI-GOLAN R,FOLLETT P A.Chapter 8-safety of fresh and fresh-cut fruits and vegetables following irradiation[A].BARKAIGOLAN R,FOLLETT P A.Irradiation for quality improvement,microbial safety and phytosanitation of fresh produce[M].Academic Press,2017:129-156.DOI:10.1016/B978-0-12-811025-6.00008-2.[百度学术] -
[15]
EUSTICE R F.Chapter 13-novel processing technologies:Facts about irradiation and other technologies[A].ANDERSEN V.Genetically modified and irradiated food[M].Academic Press,2020:269-286.DOI:10.1016/B978-0-12-817240-7.00017-6.[百度学术] -
[16]
HAJARE S N,SAXENA S,KUMAR S,WADHAWAN S,MORE V,MISHRA B B,PARTE M N,GAUTAM S,SHARMA A.Quality profile of litchi(Litchi chinensis)cultivars from India and effect of radiation processing[J].Radiation Physics and Chemistry,2010,79(9):994-1004.DOI:10.1016/j.radphyschem.2010.03.014.[百度学术] -
[17]
MAHTO R,DAS M.Effect of gamma irradiation on the physico-chemical and visual properties of mango(Mangifera indica L.),cv.‘Dushehri’and‘Fazli’stored at 20℃[J].Postharvest Biology and Technology,2013,86:447-455.DOI:10.1016/j.postharvbio.2013.07.018.[百度学术] -
[18]
WILSON M D,STANLEY R A,EYLES A,ROSS T.Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables[J].Critical Reviews in Food Science and Nutrition,2019,59(3):411-422.DOI:10.1080/10408398.2017.1375892.[百度学术] -
[19]
SOHAIL M,SUN D W,ZHU Z.Recent developments in intelligent packaging for enhancing food quality and safety[J].Critical Reviews in Food Science and Nutrition,2018,58(15):2650-2662.DOI:10.1080/10408398.2018.1449731.[百度学术] -
[20]
QU P,ZHANG M,FAN K,GUO Z.Microporous modified atmosphere packaging to extend shelf life of fresh foods:A review[J].Critical Reviews in Food Science and Nutrition,2020:1-15.DOI:10.1080/10408398.2020.1811635.[百度学术] -
[21]
MENG X,KIM S,PULIGUNDLA P,KO S.Carbon dioxide and oxygen gas sensors-possible application for monitoring quality,freshness,and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation[J].Journal of the Korean Society for Applied Biological Chemistry,2014,57(6):723-733.DOI:10.1007/s13765-014-4180-3.[百度学术] -
[22]
MARINGGAL B,HASHIM N,MOHAMED AMIN TAWAKKAL I S,MUDA MOHAMED M T.Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality[J].Trends in Food Science & Technology,2020,96:253-267.DOI:10.1016/j.tifs.2019.12.024.[百度学术] -
[23]
ROBLES-S NCHEZ R M,ROJAS-GRA M A,ODRIOZOLASERRANO I,GONZ LEZ-AGUILAR G,MARTIN-BELLOSO O.Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes[J].LWT-Food Science and Technology,2013,50(1):240-246.DOI:10.1016/j.lwt.2012.05.021.[百度学术] -
[24]
YOUSUF B,SRIVASTAVA A K.Impact of honey treatments and soy protein isolate-based coating on fresh-cut pineapple during storage at 4 ℃[J].Food Packaging and Shelf Life,2019,21:100361.DOI:10.1016/j.fpsl.2019.100361.[百度学术] -
[25]
DOS PASSOS BRAGA S,MAGNANI M,MADRUGA M S,DE SOUZA GALV O M,DE MEDEIROS L L,BATISTA A U D,DIAS R T A,FERNANDES L R,DE MEDEIROS E S,DE SOUZA E L.Characterization of edible coatings formulated with chitosan and mentha essential oils and their use to preserve papaya(Carica papaya L.)[J].Innovative Food Science & Emerging Technologies,2020,65:102472.DOI:10.1016/j.ifset.2020.102472.[百度学术] -
[26]
ZAHEDI S M,HOSSEINI M S,KARIMI M,EBRAHIMZADEH A.Effects of postharvest polyamine application and edible coating on maintaining quality of mango(Mangifera indica L.)cv.Langra during cold storage[J].Food Science & Nutrition,2019,7(2):433-441.DOI:10.1002/fsn3.802.[百度学术] -
[27]
JIANG X,LIN H,SHI J,NEETHIRAJAN S,LIN Y,CHEN Y,WANG H,LIN Y.Effects of a novel chitosan formulation treatment on quality attributes and storage behavior of harvested litchi fruit [J].Food Chemistry,2018,252:134-141.DOI:10.1016/j.foodchem.2018.01.095.[百度学术] -
[28]
ASHTARI M,KHADEMI O,SOUFBAF M,AFSHARMANESH H,ASKARI SARCHESHMEH M A.Effect of gamma irradiation on antioxidants,microbiological properties and shelf life of pomegranate arils cv.‘Malas Saveh’[J].Scientia Horticulturae,2019,244:365-371.DOI:10.1016/j.scienta.2018.09.067.[百度学术] -
[29]
ROVERA C,GHAANI M,FARRIS S.Nano-inspired oxygen barrier coatings for food packaging applications:An overview[J].Trends in Food Science & Technology,2020,97:210-220.DOI:10.1016/j.tifs.2020.01.024.[百度学术] -
[30]
YU H,LIU Y,LI L,GUO Y H,XIE Y F,CHENG Y L,YAO W R.Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms[J].Trends in Food Science & Technology,2020,96:91-101.DOI:10.1016/j.tifs.2019.12.010.[百度学术] -
[31]
张兰,徐永建.植物精油微胶囊制备及其在果蔬保鲜包装中的应用[J].食品与发酵工业,2020:1-8.DOI:10.13995/j.cnki.11-1802/ts.024994.[百度学术]ZHANG L,XU Y J.Preparation and application of plant essential oil microcapsules in fresh-keeping packaging of fruits and vegetables[J].Modern Food Science and Technology,2020:1-8.DOI:10.13995/j.cnki.11-1802/ts.024994.[百度学术] -
[32]
YIN B L,WU L,WENG M,TANG B,LAI P,CHEN J.Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum(Prunus salicina Lindl.)[J].Powder Technology,2018,340:459-464.DOI:10.1016/j.powtec.2018.09.049.[百度学术] -
[33]
MURUGESAN S N.Microencapsulation:process,techniques and applications[J].International Journal of Research in Pharmaceutical and Biomedicalences,2011,2(2):474-481.[百度学术] -
[34]
龙门,冯超,李永佳,汪旭海,蔡华珍,詹歌.缓释型茶树精油-壳聚糖微胶囊的制备、表征及体外释放规律[J].食品科学,2019,40(16):242-248.DOI:10.7506/spkx1002-6630-20181010-077.[百度学术]LONG M,FENG C,LI Y J,WANG X H,CAI H Z,ZHAN G.Preparation,characterization and in vitro release characteristics of sustained-release chitosan microcapsules containing tea tree oil[J].Food Science,2019,40(16):242-248.DOI:10.7506/spkx1002-6630-20181010-077.[百度学术] -
[35]
YIN C,HUANG C,WANG J,LIU Y,HUANG L.Effect of chitosanand alginate-Based coatings enriched with cinnamon essential oil microcapsules to improve the postharvest quality of mangoes[J].Materials,2019,12(13):2039-.DOI:10.3390/ma12132039.[百度学术] -
[36]
GONG L,LI T,CHEN F,DUAN X,YUAN Y,ZHANG D,JIANG Y.An inclusion complex of eugenol into beta-cyclodextrin:Preparation,and physicochemical and antifungal characterization [J].Food Chemistry,2016,196:324-30.DOI:10.1016/j.foodchem.2015.09.052.[百度学术] -
[37]
MO F,LIN B,LAI F,XU C,ZOU H.A green modified microsphere of chitosan encapsulating dimethyl fumarate and cross-linked by Vanillin and its application for litchi preservation[J].Industrial & Engineering Chemistry Research,2016,55(16):4490-4498.DOI:10.1021/acs.iecr.6b00028.[百度学术] -
[38]
MANDAL R,SINGH A,PRATAP SINGH A.Recent developments in cold plasma decontamination technology in the food industry[J].Trends in Food Science & Technology,2018,80:93-103.DOI:10.1016/j.tifs.2018.07.014.[百度学术] -
[39]
CHEN Y Q,CHENG J H,SUN D W.Chemical,physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment:Mechanisms and application advances[J].Critical Reviews in Food Science and Nutrition,2020,60(16):2676-2690.DOI:10.1080/10408398.2019.1654429.[百度学术] -
[40]
PAN Y W,CHENG J H,SUN D W.Inhibition of fruit softening by cold plasma treatments:affecting factors and applications[J].Critical Reviews in Food Science and Nutrition,2020:1-12.DOI:10.1080/10408398.2020.1776210.[百度学术] -
[41]
SARANGAPANI C,O'TOOLE G,CULLEN P J,BOURKE P.Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries[J].Innovative Food Science & Emerging Technologies,2017,44:235-241.DOI:10.1016/j.ifset.2017.02.012.[百度学术] -
[42]
陈姝伊,曾筠婷,袁洋,仲崇山,曹建康,孔令昊,应花梅.低温等离子体处理减轻采后香蕉果实冷害作用的研究[J].食品工业科技,2020,41(5):245-249.DOI:10.13386/j.issn1002-0306.2020.05.040.[百度学术]CHEN S Y,ZENG J T,YUAN Y,ZHONG C S,CAO J K,KONG L H,YING H M.Effect of cold plasma treatment on alleviating chilling injury of banana fruit after harvest[J].Science and Technology of Food Industry,2020,41(5):245-249.DOI:10.13386/j.issn1002-0306.2020.05.040.[百度学术] -
[43]
SKOVGAARD N.Drying technologies in food processing[J].International Journal of Food Microbiology,2009,129(2):209.DOI:10.1016/j.ijfoodmicro.2008.12.004.[百度学术] -
[44]
SEHRAWAT R,NEMA P K,KAUR B P.Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam,vacuum and hot air drying methods[J].LWT-Food Science and Technology,2018,92:548-555.DOI:10.1016/j.lwt.2018.03.012.[百度学术] -
[45]
VAR I TH J,DI JK ANARUK KUL P,ACHAR I YAVIR I YA A,ACHARIYAVIRIYA S.Combined microwave-hot air drying of peeled longan[J].Journal of Food Engineering,2007,81(2):459-468.DOI:10.1016/j.jfoodeng.2006.11.023.[百度学术] -
[46]
吴炜俊,程丽娜,肖更生,徐玉娟,余元善,刘伟俊,郑晓涛,邹颖,邹波,李俊.不同组合渗透、冷冻前处理对蓝莓干燥品质的影响[J].食品科学技术学报,2020.DOI:10.1151.TS.20200103.1800.006.html.[百度学术]WU W J,CHENG L N,XIAO G S,XU Y J,YU Y S,LIU W J,ZHENG X T,ZOU Y,ZOU B,LI J.Effects of different combination of osmosis and freezing pretreatment on the drying characteristics of blueberry [J].Journal of Food Science and Technology,2020.DOI:10.1151.TS.20200103.1800.006.html.[百度学术] -
[47]
BRAGA T R,SILVA E O,RODRIGUES S,FERNANDES F A N.Drying of mangoes(Mangifera indica L.)applying pulsed UV light as pretreatment[J].Food and Bioproducts Processing,2019,114:95-102.DOI:10.1016/j.fbp.2018.11.013.[百度学术] -
[48]
温靖,徐玉娟,肖更生,吴继军,安可婧,林羡,张岩.热泵和热风干燥对龙眼干营养品质和褐变反应的影响[J].热带作物学报,2015,36(4):779-785.[百度学术]WEN J,XU Y J,AN K J,XIAO G S,WU J J,LIN X,ZHANG Y.Effect of heat pump and hot air drying on quality characteristics and browning reaction of dried longan[J].Chinese Journal of Tropical Crops,2015,36(4):779-785.[百度学术] -
[49]
彭健,王蔚婕,唐道邦,温靖,李璐,杨婉媛,吴继军,余元善.分段式远红外-热泵干燥对龙眼品质的影响[J].食品科学,2020:1-12.[百度学术]PENG J,WANG W J,TANG D B,WEN J,LI L,YANG W Y,WU J J,YU Y S.Effects multi-stage far-infrared radiation coupled heat pump drying on the quality characteristics of Longan[J].Food Science,2020:1-12.[百度学术] -
[50]
程丽娜,唐道邦,肖更生,徐玉娟,吴继军,李俊.干燥介质中CO2浓度对荔枝热泵干燥品质的影响[J].中国食品学报,2014,14(6):169-175.DOI:10.16429/j.1009-7848.2014.06.030.[百度学术]CHENG L N,TANG D B,XIAO G S,XU Y J,WU J J,LI J.Effect of CO2 concentration in drying medium on the quality of litchi of heat pump thin layer drying[J].Journal of Chinese Institute of Food Science and Technology,2014,14(6):169-175.DOI:10.16429/j.1009-7848.2014.06.030.[百度学术] -
[51]
SALAZAR N A,ALVAREZ C,ORREGO C E.Optimization of freezing parameters for freeze-drying mango(Mangifera indica L.)slices[J].Drying Technology,2018,36(2):192-204.DOI:10.1080/07373937.2017.1315431.[百度学术] -
[52]
KHAMPAKOOL A,SOISUNGWAN S,PARK S H.Potential application of infrared assisted freeze drying(IRAFD)for banana snacks:Drying kinetics,energy consumption,and texture[J].LwtFood Science and Technology,2019,99:355-363.DOI:10.1016/j.lwt.2018.09.081.[百度学术] -
[53]
杨佳琪,袁越锦,王栋,徐英英,曹博涛.不同干燥方式对香蕉切片干燥品质的影响试验[J].食品科技,2019,44(3):74-79.DOI:10.13684/j.cnki.spkj.2019.03.013.[百度学术]YANG J Q,YUAN Y J,WANG D,XU Y Y,CAO B T.Effects of different drying methods on the drying quality of banana slices[J].Food Science and Technology,2019,44(3):74-79.DOI:10.13684/j.cnki.spkj.2019.03.013.[百度学术] -
[54]
张慜,徐艳阳,孙金才.国内外果蔬联合干燥技术的研究进展 [J].无锡轻工大学学报(食品与生物技术),2003(6):103-106.[百度学术]ZHANG M,XU Y Y,SUN J C.Research developments of combination drying technology for fruits and vegetables at home and abroad[J].Journal of Wuxi University of Light Industry,2003(6):103-106.[百度学术] -
[55]
YI J Y,LYU J,BI J F,ZHOU L Y,ZHOU M.Hot air drying and freeze drying pre‐treatments coupled to explosion puffing drying in terms of quality attributes of mango,pitaya,and papaya fruit chips[J].Journal of Food Processing and Preservation,2017,e13300.DOI:10.1111/jfpp.13300.[百度学术] -
[56]
安可婧,徐玉娟,魏来,余元善,唐道邦,温靖,林羡.龙眼间歇真空微波干燥动力学研究[J].食品与机械,2018,34(9):36-42.DOI:10.13652/j.issn.1003-5788.2018.09.007.[百度学术]AN K J,XU Y J WEI L,YU Y S,TANG D B,WEN J,LIN X.Study on the drying kinetics of longan with intermittent vacuum-microwave [J].Food & Machinery,2018,34(9):36-42.DOI:10.13652/j.issn.1003-5788.2018.09.007.[百度学术] -
[57]
邓莎莎,刘忠义,吴继军,余元善,徐玉娟.DMDC 发酵前处理对荔枝酒发酵特性的影响[J].现代食品科技,2016,32(3):239-245.DOI:10.13982/j.mfst.1673-9078.2016.3.038.[百度学术]DENG S S,LIU Z Y,WU J J,YU Y Y,XU Y J.Effect of prefer mentation treatment with dimethyl dica rbonate on the fermentation characteristics of Litchi Wine[J].Modern Food Science and Technology.2016,32(3):239-245.DOI:10.13982/j.mfst.1673-9078.2016.3.038.[百度学术] -
[58]
邓莎莎,吴继军,刘忠义,余元善,徐玉娟.二甲基二碳酸盐发酵前处理对茶枝柑果酒发酵特性的影响[J].食品科学,2016,37(21):7-13.[百度学术]DENG S S,WU J J,LIU Z Y,YU Y Y,XU Y J.Effect of dimethyl dicarbonate pretreatment on fermentation characteristics of Citrus reticulata cv.chachiensis fruit wine[J].Food Science.2016,32(3):239-245.[百度学术] -
[59]
周青,吴继军,徐玉娟,余元善,肖更生.果渣含量及杀菌方式对桑葚蒸馏酒高级醇的影响[J].湖北农业科学,2014,53(12):2879-2881.DOI:10.14088/j.cnki.issn0439-8114.2014.12.019.[百度学术]ZHOU Q,WU J J,XU Y J,YU Y Y,XIAO G S.Influence of different pulp additions and sterilization ways on the higher alcohols in mulberry distilled liquor[J].Hubei Agricultural Sciences 2014,53(12):2879-2881.DOI:10.14088/j.cnki.issn0439-8114.2014.12.019.[百度学术] -
[60]
曾悦,邓慧萍,蹇华丽.不同酵母多糖及酵母种类对荔枝酒品质的影响[J].中国酿造,2019,38(11):67-70.[百度学术]ZENG Y,DENG H P,J I AN H L.Effect of different yeast polysaccharide and yeast species on quality of litchi wine[J].China Brewing,2019,38(11):67-70.[百度学术] -
[61]
刘延波,王娜,赵志军,王贤,孙西玉,潘春梅.响应面法优化菠萝梨酒的发酵工艺[J].食品研究与开发,2020,41(8):124-129,159.[百度学术]LIU Y B,WANG N,ZHAO Z J,WANG X,SUN X Y,PAN C M.Response surface methodology for optimizing the fermentation technology of pineapple pear wine[J].Food Research and Development,2020,41(8):124-129,159.[百度学术] -
[62]
林丽静,马丽娜,黄晓兵,龚霄.菠萝皮渣糯米果酒发酵过程中主要成分变化研究 [J].中国酿造,2019,38(11):107-113.[百度学术]LIN L J,MA L N,HUANG X B,GONG X.Changes of main compounds in pineapple peel and glutinous rice wine during fermentation [J].China Brewing,2019,38(11):107-113.[百度学术] -
[63]
吴继军,徐玉娟,肖更生,张友胜,陈卫东,唐道邦,温靖,李升锋,张岩,刘亮,杨万根.一种液态果醋的发酵设备[P].2010.[百度学术]WU J J,XU Y J,XIAO G S,ZHANG Y S,CHEN W D,TANG D B,WEN J,LI S F,ZHANG Y,LIU L,YANG W Y.A fermentation equipment for liquid fruit vinegar [P].2010.[百度学术] -
[64]
朱伟林,余元善,肖更生,徐玉娟,吴继军,邹波,邹颖.龙眼果醋发酵前后主要营养品质差异研究[J].食品工业科技,2019,40(22):19-23.DOI:10.13386/j.issn1002-0306.2019.22.004.[百度学术]ZHU W L,YU Y S,XIAO G S,XU Y J,WU J J,ZOU B,ZOU Y.Differences study on the main nutritional quality of longan vinegar before and after fermentation[J].Science and Technology of Food Industry,2019,40(22):19-23.DOI:10.13386/j.issn1002-0306.2019.22.004.[百度学术] -
[65]
尹爱国,曾霞,纪秀玲,周英彪,岳茂峰.复合龙眼果醋的醋酸发酵工艺优化及其风味成分分析[J].食品研究与开发,2018,39(23):102-107.[百度学术]YIN A G,ZENG X,JI X L,ZHOU Y B,YUE M F.Optimization of acetic acid fermentation process and analysis of flavor composition of compound longan fruit vinegar[J].Food Research and Development,2018,39(23):102-107.[百度学术] -
[66]
郑欣,余元善,吴继军,徐玉娟,肖更生,温靖.不同乳酸菌在荔枝汁中的发酵特性研究[J].广东农业科学,2013,40(7):95-98.DOI:10.16768/j.issn.1004-874X.2013.07.008.[百度学术]ZHENG X,YU Y S,WU J J,XU Y J,XIAO G S,WEN J.Study on fermentation characteristic of various lactic acid bacteria in litchi juice [J].Guangdong Agricultural Sciences,2013,40(7):95-98.DOI:10.16768/j.issn.1004-874X.2013.07.008.[百度学术] -
[67]
郑欣,余元善,吴继军,徐玉娟,肖更生,程银棋.荔枝汁经乳酸菌发酵后营养品质的变化及贮藏稳定性研究 [J].现代食品科技,2 013,29(12):29 0 9-2914.DOI:10.13982/j.mfst.1673-9078.2013.12.027.[百度学术]ZHENG X,YU Y S,WU J J,XU Y J,XIAO G S,CHENG Y Q.Quality changes of litchi juice after fermentation and the stability during low-temperature storage[J].Modern Food Science and Technology,2013,29(12):2909-2914.DOI:10.13982/j.mfst.1673-9078.2013.12.027[百度学术] -
[68]
刘磊,汪浩,张名位,张雁,张瑞芬,唐小俊,邓媛元.龙眼乳酸菌发酵工艺条件优化及其挥发性风味物质变化[J].中国农业科学,2015,48(20):4147-4158.DOI:10.3864/j.0578-1752.2015.20.014.[百度学术]LIU L,WANG H,ZHANG M W,ZHANG Y,ZHANG R F,TANG X J,DENG Y Y.Optimization of the process conditions and change of volatile flavor components of longan pulp fermented by lactic acid bacteria[J].Scientia Agricultura Sinica,2015,48(20):4147-4158.DOI:10.3864/j.0578-1752.2015.20.014.[百度学术] -
[69]
陈晓维,徐玉娟,余元善,吴继军,邹波.龙眼枸杞糙米(发芽)复合饮料发酵期间品质变化规律研究[J].热带作物学报,2018,39(11):2265-2271.[百度学术]CHEN X W,XU Y J,YU Y S,WU J J,ZOU B.Quality change of mixed beverage from longan,chinese wolfberry,germinated brown rice during fermentation[J].Chinese Journal of Tropical Crops,2018,39(11):2265-2271.[百度学术] -
[70]
CHEN H,XIAO G,XU Y,YU Y,WU J,ZOU B.High hydrostatic pressure and Co-fermentation by Lactobacillus rhamnosus and Gluconacetobacter xylinus improve flavor of Yacon-Litchi-Longan juice[J].Foods,2019,8(8):308.DOI:10.3390/foods8080308.[百度学术] -
[71]
邹颖,邹波,余元善,徐玉娟,吴继军,肖更生,傅曼琴.酵母菌乳酸菌共发酵对荔枝汁品质的影响[J].现代食品科技,2019,35(10):189-195.DOI:10.13982/j.mfst.1673-9078.2019.10.026.[百度学术]ZOU Y,ZOU B,YU Y S,XU Y J,WU J J,XIAO G S,FU M Q.Effect of fermentation by co-culture of yeast and lactic acid bacterium on the quality of lychee juice[J].Modern Food Science and Technology,2019,35(10):189-195.DOI:10.13982/j.mfst.1673-9078.2019.10.026.[百度学术] -
[72]
WEN J,MA L,XU Y,WU J,YU Y,PENG J,TANG D,ZOU B,LI L.Effects of probiotic litchi juice on immunomodulatory function and gut microbiota in mice[J].Food Research International,2020,137:109433.DOI:10.1016/j.foodres.2020.109433.[百度学术] -
[73]
胡丽云,余元善,徐玉娟,肖更生,吴继军,傅曼琴.一株发酵乳杆菌(Lactobacillus fermentium)对柠檬酸的发酵特性研究 [J].现代食品科技,2016,32(8):109-114.DOI:10.13982/j.mfst.1673-9078.2016.8.017.[百度学术]HU L Y,YU Y S,XU Y J,XIAO G S,WU J J,FU M Q.Study on the fermentation characteristics of citric acid by a Lactobacillus fermentum[J].Modern Food Science and Technology.2016,32(8):109-114.DOI:10.13982/j.mfst.1673-9078.2016.8.017.[百度学术] -
[74]
YU Y,XIAO G,XU Y,WU J,ZHANG Y,CHEN W.Changes of quality in the fruits of Prunus mume during deacidification by fermentation with Lactobacillus fermentium[J].Journal of Food Science,2015,80(1-3):405-410.DOI:10.1111/1750-3841.12769.[百度学术] -
[75]
YU Y,XIAO C,XU Y,WU J,FU M,WEN J.Slight fermentation with Lactobacillus fermentium improves the taste(sugar:acid ratio)of citrus(Citrus reticulata cv.chachiensis)juice[J].Journal of Food science,2015,80(10-12):2543.DOI:10.1111/1750-3841.13088.[百度学术] -
[76]
袁星星,余元善,吴继军,肖更生,徐玉娟,邹波.Lactobacillus fermentum发酵降酸对三华李汁品质的影响[J].现代食品科技,2 016,32(11):13 4-13 8,62.D OI:10.139 8 2/j.mfst.1673-9078.2016.11.021.[百度学术]YUAN X S,YU Y Y,WU J J,XU Y J,ZOU B.Effect of deacidification by fermentation with Lactobacillus fermentum on the qualities of plum(Prunus salicina Lindl.cv.Sanhua)juice[J].Modern Food Science and Technology,2016,32(11):134-138,62.DOI:10.13982/j.mfst.1673-9078.2016.11.021.[百度学术] -
[77]
李丰廷,邹波,肖更生,徐玉娟,唐道邦,余元善,吴继军.植物乳杆菌在桑果浆中的发酵特性研究[J].蚕业科学,2018,44(5):746-752.DOI:10.13441/j.cnki.cykx.2018.05.013.[百度学术]LI F T,ZOU B,XIAO G S,XU Y J,TANG D B,YU Y Y,WU J J.A study on fermentation characteristics of Lactobacillus plantarum in mulberry pulp[J].Acta Sericologica Sinica,2018,44(5):746-752.DOI:10.13441/j.cnki.cykx.2018.05.013.[百度学术] -
[78]
刘育颖.非热杀菌技术在鲜榨果汁加工中的应用研究[J].食品科技,2019,44(8):93-96.DOI:10.13684/j.cnki.spkj.2019.08.017.[百度学术]LIU Y Y.Application of non-thermal sterilization technology in fresh juice processing[J].Food Science and Technology,2019,44(8):93-96.DOI:10.13684/j.cnki.spkj.2019.08.017.[百度学术] -
[79]
RENOUF V,STREHAIANO P,LONVAUD-FUNEL A.Effectiveness of dimethlydicarbonate to prevent Brettanomyces bruxellensis growth in wine[J].Food Control,2008,19(2):208-216.DOI:10.1016/j.foodcont.2007.03.012.[百度学术] -
[80]
郑欣,余元善,吴继军,徐玉娟,肖更生,黄婉华.超高压处理的香蕉汁在贮藏期间的品质变化 [J].江西农业大学学报,2014,36(1):62-67.DOI:10.13836/j.jjau.2014010.[百度学术]ZHENG X,YU Y S,WU J J,XU Y J,XIAO G S,HUANG W H.Changes in the quality of banana juice treated with ultrahigh pressure [J].Acta Agriculturae Universitis Jiangxiensis,2014,36(1):62-67.DOI:10.13836/j.jjau.2014010.[百度学术] -
[81]
徐玉娟,温靖,肖更生,吴继军,余元善,傅曼琴.超高压和热处理对荔枝汁品质的影响研究[J].安徽农业科学,2014,42(31):11078-11082.DOI:10.13989/j.cnki.0517-6611.2014.31.089.[百度学术]XU Y J,WEN J,XIAO G S,WU J J,YU Y Y,FU M Q.Effect of thermal and ultra high pressure treatments on quality characteristics of litchi juice[J].Journal of Anhui Agricultural Sciences,2014,42(31):11078-11082.DOI:10.13989/j.cnki.0517-6611.2014.31.089.[百度学术] -
[82]
HULLE N R S,CHAKRABORTY S,RAO P S.Effect of high pressure thermal processing on the quality attributes of Aloe vera-litchi mixed beverage[J].Innovative Food Science & Emerging Technologies,2017,40:68-77.DOI:10.1016/j.ifset.2016.07.025.[百度学术] -
[83]
YU Y S,JIN T Z,XIAO G S.Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries[J].Journal of Food Processing and Preservation,2017,41(6):e13303.DOI:10.1111/jfpp.13303.[百度学术] -
[84]
方婷,龚雪梅,虞聪,陈锦权.高压脉冲电场对冷冻浓缩荔枝汁非热杀菌的研究[J].食品科技,2010,35(9):83-87.DOI:10.13684/j.cnki.spkj.2010.09.031.[百度学术]FANG T,GONG X M,YU C,CHEN J Q.Study on non-thermal processing of freeze concentration lichi juice by pulsed electric field [J].Food Science and Technology,2010,35(9):83-87.DOI:10.13684/j.cnki.spkj.2010.09.031.[百度学术] -
[85]
赵芳,吴继军,曹清明,徐玉娟,肖更生,温靖,唐道邦,林羡.两种浓缩工艺对荔枝汁的挥发性风味物质[J].食品科学,2012,33(18):156-161.[百度学术]ZHAO F,WU J J,CAO Q M,XU Y J,XIAO G S,WEN J,TANG D B,LIN X.Effects of two different condensation methods on volatile aromatic compounds in litchi juice[J].Food Science,2012,33(18):156-161.[百度学术] -
[86]
朱云婷,米生喜,蔡勇建,赵谋明,邓欣伦,赵强忠.三种不同生产工艺的荔枝酒品质对比[J].现代食品科技,2018,34(11):185-193.DOI:10.13982/j.mfst.1673-9078.2018.11.028.[百度学术]ZHU Y T,MI S X,CAI Y J,ZHAO M M,DENG X L,ZHAO Q Z.Comparison of the quality of litchi wines produced through three different winemaking processes[J].Modern Food Science and Technology,2018,34(11):185-193.DOI:10.13982/j.mfst.1673-9078.2018.11.028.[百度学术] -
[87]
ZHU X R,WANG H,SUN J,YANG B,DUAN X W,JIANG Y M.Pericarp and seed of litchi and longan fruits:constituent,extraction,bioactive activity,and potential utilization[J].Journal of Zhejiang University-Science B,2019,20(6):503-512.DOI:10.1631/jzus.B1900161.[百度学术] -
[88]
杨瑞,翟海瑞,杨劲松.菠萝皮渣生产虾青素的发酵条件研究[J].食品工业科技,2011,32(9):261-263.DOI:10.13386/j.issn1002-0306.2011.09.069.[百度学术]YANG R,ZHAI H R,YANG J S.Fermentation conditions optimization of the astaxanthin production for pineapple peel by Phaffi a rhodozyma [J].Science and Technology of Food Industry,2011,32(9):261-263.DOI:10.13386/j.issn1002-0306.2011.09.069.[百度学术] -
[89]
CHEN J Y,XU Y J,GE Z Z,ZHU W,XU Z,LI C M.Structural elucidation and antioxidant activity evaluation of key phenolic compounds isolated from longan(Dimocarpus longan Lour.)seeds [J].Journal of Functional Foods,2015,17:872-880.DOI:10.1016/j.jff.2015.06.028.[百度学术] -
[90]
龚小洁,余元善,徐玉娟,吴继军,肖更生,邹波.乳酸菌发酵对荔枝果渣理化性质的影响[J].现代食品科技,2015,31(10):257-262.DOI:10.13982/j.mfst.1673-9078.2015.10.042.[百度学术]GONG X J,YU Y S,XU Y J,WU J J,XIAO G S,ZOU B.Effect of fermentation with lactic acid bacteria on the physicochemical pr op er t ie s of l itch i p om a ce[J].Mo d e r n Fo o d S c ie n c e and Technology,2015,31(10):257-262.DOI:10.13982/j.mfst.1673-9078.2015.10.042.[百度学术] -
[91]
杨正楠,廖良坤.菠萝皮渣发酵饲料特性及对营养的改善[J].热带农业科学,2018,38(10):8-12.[百度学术]YANG Z N,LIAO L K.The fermenting characteristics and nutrient improvement of fermented feed of pineapple peel[J].Chinese Journal of Tropical Agriculture,2018,38(10):8-12.[百度学术]
-
摘要
岭南特色水果营养丰富、风味独特,以荔枝、龙眼为代表,其中我国种植面积、产量居世界首位, 岭南地区种植面积占全国的50%~60%,但因保鲜加工技术瓶颈,水果产业实际经济价值远低于水果自身价值。 目前国内外对岭南特色水果保鲜技术研究包括化学保鲜、气调包装保鲜、辐照保鲜、新型智能化气调包装、可食性涂抹保鲜、微胶囊化天然抗菌剂、低温等离子体保鲜,其中前三者为传统技术,后四者属于新型技术;加工方面的研究包括果干干燥(热风干燥、热泵节能干燥、冷冻干燥)、水果发酵(果酒、果醋、乳酸菌发酵)、果汁加工(传统热杀与化学杀菌、新型非热杀菌(超高压和脉冲电场)、新型浓缩加工(冷冻浓缩、气体水合物浓缩)、副产物综合利用。保鲜与加工方面的研究方向为传统技术的改善、新型技术的探索,前者主要为联合使用;后者主要采用物理场辅助、生物发酵等方式,皆不能满足产业需求;新技术的成熟化、产业化,以及与传统技术的有效结合将是未来的研究重点。从岭南特色水果保鲜与加工现状、存在问题与难点、保鲜与加工新技术等方面系统分析岭南特色水果保鲜与加工研究进展,旨在为促进岭南特色水果产业发展提供借鉴。
Abstract
The characteristic fruits of Lingnan are rich in nutrition and have unique flavor. The planting area and yield of litchi and longan in China rank first in the world, and Lingnan area planting accounts for about 50%-60% of the whole country. However, the actual economic value of fruit industry is far lower than the value of fruit itself due to the bottleneck of preservation processing technologies. At present, the researches on the preservation technologies of Lingnan characteristic fruits at home and abroad include chemical preservation, modified atmosphere packaging preservation, irradiation preservation, new intelligent modified atmosphere packaging preservation, edible coating preservation, microencapsulation natural anti-microbial agents, and low-temperature plasma preservation, among which the first three are traditional technologies, while the last four are new technologies. Researches on processing include fruits drying (hot air drying, heat pump energy saving drying, freeze drying), fruit fermentation (fruit wine, fruit vinegar, lactic acid bacteria fermentation), juice processing (traditional thermal and chemical sterilization, new non-thermal sterilization (high pressure and pulse electric field), novel concentrating (freeze concentrating, gas hydrate concentrating), and comprehensive utilization of by-products. The research directions of preservation and processing are the improvement of traditional technologies and the exploration of new technologies. The former is mainly used in combination, while the latter mainly adopts the methods of physical field assistance and biological fermentation, both of them cannot meet the industrial demand. The maturity and industrialization of new technologies, and their effective combination with traditional technologies will be the focus of future researches. This paper summarized the research progress in the preservation and processing technologies are systematically analyzed from the aspects of current situation and existing problems of the preservation and processing of Lingnan characteristic fruits, and new preservation and processing technologies, aiming to provide references to promote the development of Lingnan characteristic fruit industry.
Keywords
Lingnan characteristic fruit ; preservation ; drying ; fermentation ; sterilization