-
随着人们生活水平的提高,消费者对水果品质不断有新的需求,较好的外观和风味以及较少损伤和污染的水果愈发受到青睐。但目前世界大多数国家尤其是发展中国家在水果种植上多以散户种植为主,种植标准不统一,使水果品质良莠不齐。此外, 水果品质形成受阳光、温度、水分、土壤等诸多因素影响,无法保证所有水果果实均处于高品质状态。 严重了影响水果市场竞争力、品牌树立和消费者享用程度[1-2]。根据水果品质进行售前分级可有效保证市场品质、促进品牌打造、提升商品竞争力、指导采后处理,具有重要意义。
-
虽然理化指标检测法是目前最精确、最广泛使用的食品品质与安全检测技术,但该方法操作繁琐、 检测速度慢、检测成本较高、且常会造成果实浪费, 更适用于抽检,无法满足大批量水果品质无损检测与分选的要求。20 世纪80—90 年代,美国、日本、 韩国等国家掀起了水果品质无损检测与分级技术的研究热潮。我国水果品质无损检测研究起步较晚, 目前大多还停留在人工感官分选,该方式效率低、 受主观因素干扰大、劳动强度大、准确度差。无损检测技术是在不破坏被测对象的前提下根据被测样本品质相关的物理特性对其进行快速、智能检测, 达到分级的目的。经过过去几十年的发展,涌现了一大批基于声、光、电、热、磁等技术的水果品质无损检方法,如光谱技术、机器视觉技术、高光谱成像技术、电子鼻技术、声特征技术、介电特性技术和低场核磁共振技术等。针对水果结构、外形、 检测对象等,这些方法各有利弊,未全部实际应用。 本文介绍了水果品质无损检测领域已有技术的特性及其对应检测可行的水果品质参数,分析了无损检测技术在水果品质分级行业的实际应用现状, 讨论了目前水果品质无损检测领域存在的难点,并对下一步研究方向进行展望,以期为水果品质无损检测研究提供参考。
-
1 水果品质无损检测技术种类
-
1.1 光谱技术
-
光谱技术主要是以反射、半透射和全透射3 种方式经过水果并携带水果品质相关信息从而对水果品质进行检测。其中,反射光谱是光照射在水果表面反射回来的光谱信号,主要关注的是水果表层约1 cm以内的特征信息;全透射光谱是光穿透水果一端后从另一端射出的光谱信号,可携带丰富全面的水果内部品质信息;半透射光谱是将光穿透水果赤道位置后从底部射出,从而携带水果局部品质信息, 达到减少光谱信号透过水果造成衰减的目的,用水果局部品质特征表征整果品质特征(水果内部品质相对均匀)。水果品质光谱无损检测技术主要有可见/近红外光谱、X射线、激光多普勒、拉曼光谱和太赫兹。
-
1.1.1 可见/近红外外光谱
-
可见/近红外光谱技术是目前最常用的水果内部品质无损检测技术。可见光的范围为380~780 nm,近红外光是介于780~2526 nm范围内的电磁波,其中780~1100 nm为近红外短波、1100~2526 nm为近红外长波。可见光区域主要对水果颜色变化较敏感,近红外光主要是通过对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,使得经过被测样本的可见/近红外光携带被测样本相关品质信息。由于可见和近红外光谱均具有较强的穿透能力和信息获取能力,该技术目前在水果糖度、酸度、硬度、水分、成熟度、货架期、内部缺陷、外部损伤、碳水化合物含量及其他营养成分[3-12]等品质特征检测中得到了广泛研究,结果证实是可行的。其中,对于小型薄皮水果而言,可见/近红外光谱通常采用全透射方式检测水果内部品质信息,反射方式检测表层品质信息。 但对于大型厚皮水果而言,可见/近红外信号全透射后衰减较大,反射信号又无法获取果肉信息,通常采用半透射的方式降低光谱信号损耗对水果内部品质信息进行检测。
-
1.1.2 X射线
-
X射线是由阴极灯丝发射的高速电子束打击阳极靶面而产生的,波长在0.001~10 nm之间,光子能量比可见光的光子能量大几万至几十万倍,具有极强的穿透性,X射线通常以全透射的方式应用在水果内部品质检测。不同品质状态部位造成的X射线衰减程度不同,因此,对X射线通过水果后的信号进行图像重建可较好呈现与表征水果内部品质状态。但X射线所能携带的特征信息不多,主要对水果的密度和水分敏感,可用于水果体积、密度、含水率、可食率、内部缺陷(硬粒化、 烂心病、水心病)[13-17]等品质信息的无损检测。
-
1.1.3 激光多普勒测振
-
激光多普勒测振技术主要基于多普勒效应测量从振动物体表面散射回来的光所产生的频移,具有灵敏度高、非接触性测量、不破坏物体振动等优点,可通过测量农产品的振动特性实现对品质的无损检测。目前该方法主要用于水果成熟度、硬度[18-19]等无损检测。
-
1.1.4 拉曼光谱
-
拉曼光谱提供的是分子内部各种简正振动频率及有关振动能级的信息,与红外光谱产生的机制不同,拉曼光谱是由于分子极化率变化诱导产生的,而红外光谱是由于分子偶极矩变化产生的[20]。二者在分子结构分析中相互补充。极性基团如C=O、N-H及O-H等具有很强的红外活性, 而非极性基团如C=C、C-C、N=N及S-S等具有很强的拉曼活性。水分子具有强烈的红外吸收和弱的拉曼活性。拉曼光谱主要用于水果农药残留的无损检测[21],也有少量研究验证了拉曼光可以识别水果新鲜度[22]、成熟度[23]等。
-
1.1.5 太赫兹光谱
-
太赫兹光谱又称T射线,是指频率在0.1~10 THz(1 THz=1012 Hz,对真空中波长为30~3000 μm)范围内的电磁波,传统上也被称为亚毫米波或远红外线。由于波段位置的特殊性, 太赫兹光谱辐射兼具微波电子学和红外光子学的特征,频段处在许多生物大分子振动和转动能级,可根据太赫兹波的强吸收和谐振特性建立分子指纹特征谱鉴别物质成分。此外,太赫兹光谱的水敏感性高,非常适合物质含水量分析[24]。目前,太赫兹光谱在水果品质上的应用主要集中在农药残留的无损检测上[25-26]。也有研究表明,太赫兹光谱可有效识别水果糖度[27]。
-
1.1.6 高光谱成像
-
高光谱成像的主要目的是获取大量被测目标窄波段连续光谱图像的同时,以图像的数据格式存储每个像元几乎连续的光谱数据,其分辨率在 Δλ/λ=0.01 数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达纳米级。因此,高光谱成像不仅在信息丰富程度方面有了极大提高,还可获取被测对象整个面阵的品质信息,检测结果更加综合、精确,避免了传统点式光谱检测技术以局部代替整体品质的缺点。研究表明,高光谱成像技术可用于水果成熟度、 硬度、可溶性固形物等[28-30]内部品质信息无损检测, 也可用于外皮损伤[31]、虫蛀[32]等外部品质信息无损检测。
-
1.2 机器视觉技术
-
机器视觉又称计算机视觉,是随着计算机技术的发展迅速成长起来的,是指计算机对三维空间的感知,包括捕获、分析、识别等过程,是计算机科学、 光学、自动化技术、模式识别、人工智能技术的综合。 主要由图像的获取、处理和分析、输出或显示3 部分组成。CCD摄像机通过图像采集卡将水果图像传入计算机,计算机对图像进行一系列处理,可确定水果的颜色、大小、形状、纹理、表皮损伤[33-37] 等外观特征。
-
1.3 电子鼻技术
-
仿生电子鼻主要由传感器阵列、接口电路和模式识别子系统3 部分构成,根据所测物质的不同可适当改进。传感器阵列包括数个气敏传感器,各传感器对不同类别的气体挥发物敏感,使得整个电子鼻系统能够分析、识别和检测复杂气味和绝大多数挥发气体。其工作机理是:挥发性化合物与传感器活性材料表面接触时会发生瞬时响应(发生系列物理化学变化),该响应通过接口电路将电压信号转化为数字信号,被计算机记录并传送到信号处理单元进行分析,与数据库中已存有的大量挥发性化合物的信息进行比较、鉴别,来确定气体类型,从而鉴别出相应结果。已有较多研究表明,电子鼻技术在水果糖度、硬度、成熟度、腐败程度、机械损伤[38-42]等品质信息无损检测上是可行的。
-
1.4 声特征技术
-
水果受到外部激励时,其共振频率与弹性特性有较大的相关性,利用固定速度对水果施加冲击力, 可以采集到水果对应的声学数据,利用音频采集器对数据进行收集,并借助控制系统对数据进行相应的处理分析,即可得到水果品质与其声学数据之间的关系。基于声特征的水果品质检测系统通常包括机构动作(用于敲击水果)、音频采集和信号处理3 个部分。研究表明,声特征检测技术对水果硬度、 内部缺陷、成熟度、贮藏时间[43-46]等品质无损检测是可行的。
-
1.5 介电特性技术
-
水果属于电介质,电介质中的电子受原子核强烈束缚,不能自由移动,其特征是以正、负电荷重心不重合的电极化方式传递、存贮或记录电的作用和影响,从而起到束缚电荷和作用。从微观上看, 水果分子内部存在电场,且在分子线度范围内改变位置。这种微观特性实质上决定水果的生理、物理和化学特征。因此,可将被测水果直接放入平板电极间测定其电特性参数(介电常数、电感、阻抗等) 来反映水果品质特性。研究表明,介电特性检测技术可有效对水果新鲜度、机械损伤、成熟度、含水率、糖度与硬度[47-52]等品质特征进行识别。
-
1.6 低场核磁共振技术
-
核磁共振是指具有固定磁矩的原子核( 如1H、13C、31P、19F等)在恒定的磁场与交变磁场作用下,与交变磁场发生能量交换的现象。磁场强度低于0.5 T的核磁共振现象称为低场核磁共振,其基本原理是对处于恒定磁场中的样品施加不同的射频脉冲,使氢质子发生共振、衰减、聚相等现象而呈现不同的信号,这些信号经傅里叶转换、反演、 二维或三维成像等处理后,得到不同的图谱或图像, 通过图谱和图像的变化对样品进行分析,根据自扩散系数、纵向弛豫时间和横向弛豫时间来反映被测样品的分子动态信息。核磁共振具有很强的穿透性, 低场核磁共振即可满足农产品的检测需求。研究表明,低场核磁共振技术对水果成熟度、货架期、硬度、机械损伤、水心病、木质化[53-58]等无损检测具有独特优势。
-
2 水果品质无损检测技术实际应用现状
-
目前虽已有多种可行的水果品质无损检测方法,但并非所有方法都应用于实际生产,不少方法在实用过程中尚存在诸多问题,包括噪声干扰、效率过低、无法适应样本差异、成本过高等。
-
2.1 光谱技术
-
对于光谱信号而言,波长越短,信号穿透性越强,检测过程中衰减越小,信号越稳定;波长越长,穿透性越弱,检测过程中衰减越大,信号越容易受干扰。上述光谱检测方法中穿透性最强(波长最短)的为X射线,但X射线检测成本较高,数据采集速度较慢,包含的品质特征信息较少,主要针对内部结构探测,多用于工业或医学的无损检测, 在水果品质无损检测上实际应用不多。Eshet Eilon公司采用X射线技术研发了鳄梨成熟度、内部缺陷无损智能检测装备。可见/近红外光谱的波长在整个光谱波段中相对居中,具有相对较强的穿透性能,同时又能携带较丰富的样本特征,在水果品质无损检测中应用最为广泛,也是唯一一种反射、透射和半透射3 种检测方式均可较好实现的水果品质无损检测技术。美国Polychromix、日本Kubota、日本ATAGO、中国聚光科技、中国中浪科技和中国金标果安农业科技等企业,针对水果糖度、酸度、 硬度和内部虫害的便携式内部品质无损检测仪进行了开发、量产、销售与实际产业应用。便携式无损检测属于静态检测,适用于抽检或消费者采购挑选,为满足大批量水果无损分级需要,可见/近红外光谱技术亦可配合流水线传输,对大批量水果实现动态快速无损检测。为此,日本Mitsui Mining& Smelting公司、日本FANTEC公司、日本OMI公司、 韩国农业部、日本Shibuya公司、意大利Unitec集团、 中国浙江大学和中国江西绿盟公司都研发了水果品质在线无损检测装备并投入实际应用。其中,小型薄皮水果(苹果、桃、梨等)的品质可用反射和透射两种方式进行实现,对于大型厚皮水果(西瓜、 柚果、哈密瓜等)通常采用半透射的方式进行实现。 拉曼光谱采用的波长虽然也为可见或近红外波段, 但该光谱技术是由光源照射到物质上发生的非弹性散射光谱,使得其信号较弱,抗干扰能力差,无损检测过程中通常需要配合信号增强剂的使用才能实现[59-60],性能不够稳定,多用于有损可控背景下的快速智能检测,在水果品质无损检测的实际应用中未见报道。激光多普勒测振通常采用可见光的单一波段根据反射光谱的频移进行检测,因此无法携带丰富的水果内部信息,仅用于水果成熟度和硬度的检测。而成熟度和硬度是水果关注度相对较低的指标,因此该技术在水果品质无损检测中的实际应用较少。德国OptoMET针对苹果、梨、猕猴桃等水果的成熟度、硬度无损检测,研发了基于激光多普勒测振技术的无损检测仪。太赫兹光谱作为一种新兴的光谱检测技术,检测成本较高,光路技术还不够成熟,透射性能较差,虽然具有一定的应用前景,但目前尚未在水果品质无损检测中实际应用。 高光谱成像技术实际上是光谱技术的进阶,相对于传统的点式光谱检测,高光谱成像可获得检测对象整个面阵的光谱信号,采集的信息更加全面丰富。但也正因高光谱成像获取的信息量庞大,导致后期数据分析运行效率不高,成为该技术走向流水线式实际应用的最大阻碍。此外,高光谱设备较传统光谱设备复杂、笨重、集成度低,不便于形成手持便携式检测设备,加之高光谱成像设备价格昂贵, 因此,在水果品质静态检测的实际应用中也少见报道。不少专家提出通过提取极度相关特征来减少特征数量、提升高光谱运算效率。但轻微的特征减少仍无法实现运算效率的明显提升,过度减少特征又会降低检测精度,失去了高光谱成像技术本身的意义。因此,高光谱成像技术在实际应用中存在的问题至今尚未得到较好解决。
-
2.2 机器视觉技术
-
机器视觉技术在无损检测领域中最为成熟、 稳定,已形成的装备在水果品质无损检测与分级中得到广泛应用。例如,美国的OSCARTM型和MERLIN型高速水果分级生产线用于对苹果、梨、 橘子、桃等水果的品质检测与分级;日本Naoshi研究的计算机视觉检测设备,针对苹果、桃、梨等多个水果品种,分别制定了颜色、形状、大小、纹理、外部损伤的计算机视觉分级标准;中国浙江大学研制的脐橙机器视觉分选设备,在国内应用较广泛;中国江西绿盟公司生产的机器视觉外观品质检测分级线,在海内外均取得实际应用。随着多源信息融合技术的出现,国外专家提出采用一条生产线搭载多检测信息源设备的水果无损检测分级装备, 并取得了实际应用,尤其是针对大型厚皮水果,该技术手段可有效提升检测维度和精度。例如,日本OMI公司开发的西瓜品质在线检测装备,结合了近红外光谱、机器视觉和声特征等检测手段,可对西瓜颜色、大小、形状、糖度、空心和硬度进行识别; 韩国农业部开发的无损检测分级装备结合了近红外光谱、机器视觉和声特征等检测手段,可对西瓜糖度和内部损害进行检测。
-
2.3 电子鼻技术
-
电子鼻技术是一种新兴的无损检测技术,但在实际应用中还存在许多问题:(1)检测速度较慢。电子鼻完成一次检测需要经过集气、传感器清洗和进样等过程,耗时通常至少1 min以上,因此较难实现流水线动态检测。(2)易受噪声干扰。电子鼻的气敏传感器的输出结果极易受到环境噪声的影响,如环境温湿度变化、环境背景气味变化等。(3) 易受漂移噪声干扰。电子鼻传感器保持高灵敏性以保证检测精度,但也容易老化,形成漂移噪声。
-
2.4 声特征技术
-
声特征果品检测技术最开始是通过传感器贴于水果表面来感受敲击水果时的声学振动,从而对水果内部品质进行检测,但贴片式的检测方法不易固定和安装,且影响水果的自由振动。随着声学检测技术的日渐成熟,学者开始采用麦克风收集水果被敲击的声音,虽然信号采集起来更加灵活,但易受环境噪声的干扰,因此,声特征检测技术研发的装备以静态检测方式居多。但随着降噪技术的提升,也有动态无损检测装备出现,如日本Shizuoka Shibuya Seiki公司基于声特征检测技术研发出西瓜在线检测分级装置。
-
2.5 介电特性技术
-
介电特性特性检测技术通常依靠两块电极板夹住水果以获得水果导电状态下的介电特性,受检测方式限制,无法实现动态在线检测。此外,水果的介电特性在采集过程中波动较大,且介电特性与内部成分之间的相关性不够强,不足以直接用于预测许多重要的指标参数。因此,介电特性检测法在水果品质无损检测中实际应用不多。
-
2.6 核磁共振技术
-
核磁共振检测法虽然检测精度高,不仅可获取内部图像信息,且可根据弛豫特征预测内部品质。 但其检测速度较慢,即便是低场核磁共振成本也十分昂贵,目前大多在医学上使用,很少在农业上取得实际应用。
-
3 水果品质无损检测领域存在难点
-
3.1 检测精度进一步提升
-
无损检测技术的出现弥补了传统有损检测的不足,但也降低了检测精度。目前在无损检测领域, 识别精度70%以上或拟合系数0.7以上即认为可行, 精度80%以上或拟合系数0.8以上即认为达到了较好效果。虽然无损检测技术理论上不可能达到有损检测的精度,但仍有较大的精度提升空间。目前的检测精度可以帮助批量水果进行快速分类,虽然对于单个水果而言可能存在一定甚至较大误差,但该技术的实现对整批水果而言具有重要意义,对产业贡献较大。然而,若能够进一步提高无损检测精度, 其快速智能的检测优势则能有更大的发挥空间,随着无损检测结果的可信度、稳定性进一步提高,在误差允许情况下,无损检测在一定领域有望取代有损检测。
-
3.2 模型适应性改善
-
建立准确、稳定的检测模型是实现无损检测技术的关键。通常对一定数量的水果样本进行无损检测特征提取,通过拟合水果无损检测特征与目标品质参数输出之间的映射关系来建立检测模型,以用于后续水果品质参数的无损检测。但水果样本特征在时序、品种、地域等方面上均存在一定差异,因此模型建立所用的样本很难完全包含后续待测样本的全部特征情况,会造成一定的模型适应性问题, 影响检测精度。此外,模型建立时刻的环境参数(温度、湿度等)与实际检测时刻的环境参数存在一定差异,从而影响传感器输出值波动对检测模型的适应性。
-
3.3 线性漂移去除
-
无损检测装备中的传感器等电子元器件均存在老化的过程,传感器的输出值会随着老化程度的加深而发生变化,这种变化通常是线性的,称之为线性漂移噪声,影响检测精度。
-
3.4 大型厚皮水果内部品质检测
-
目前无损检测技术大多应用在小型薄皮水果上,在大型厚皮水果上应用较少,原因是小型薄皮水果更有利于无损检测信号的穿透,可获取较强的内部品质特征信号。而无损检测信号经过大型厚皮水果后衰减较大,无法获取或获取到的无损检测信号较弱,信噪比较低,较难从中提取足够的分类识别有效信息,造成检测精度较低。目前无损检测技术仅在柚子、西瓜、哈密瓜的品质信息快速检测上得到应用,且精度不高,对榴莲、菠萝密等大型厚皮水果尚无较好的无损检测方法。
-
4 展望
-
4.1 加强人工智能算法研究
-
人工智能算法是无损检测的核心,建立一套准确、稳定、容错能力强的无损检测模型是技术实现的关键。但目前的建模方式通常套用几种常规算法,择优而定,模型效果具有较大的随机性,缺乏综合、深入的数据挖掘与分析。考虑建模算法的发展程度与实际应用存在的问题,后续可从以下5 个方面加强无损检测智能算法研究:(1)机理研究。加强水果品质形成(变化)机理研究可为无损检测特征提取提供科学参考,使特征选择更准确, 提升检测精度;(2)深度学习。深度学习是传统人工智能算法的分支与进阶,可更全面、深层次地提取特征信息,提升检测精度;(3)多源信息融合。多源信息融合可多角度地全面获取水果品质相关特征信息,提升检测精度;(4)模型的传递算法。针对样本差异造成的模型适应性问题,可通过少量的样本检测结果矫正原有模型,使原有模型适应后续的样本变化,避免重新建模的大量采样与调参工作;(5)噪声补偿算法。针对环境噪声、线性漂移噪声,研究噪声对传感器检测结果的影响规律,反演出一套噪声补偿算法,矫正模型的检测精度。
-
4.2 提升无损检测关键硬件性能
-
光源、检测传感器、信号发生器等一系列无损检测关键硬件的稳定性同样对无损检测技术的应用造成较大影响。硬件设备的稳定是获取高质量原始信号的关键,是保证水果品质无损检测的前提, 如提升检测传感器的稳定性可有效缓解漂移噪声强度、保证光源或信号发生装置的稳定性可有效减少检测信号的噪声波动等。
-
4.3 优化无损检测装备结构与参数
-
无损检测装备结构与参数需要根据检测对象而定,如对于可见/近红外光谱检测技术而言,小型薄皮水果可用透射和反射的检测方式,大型厚皮水果则需采用半透射的检测方式。此外,样本无损检测初始信号需在适合的装备参数下获取才能达到最佳效果,如信号强度、角度、传送速度、距离、用材、温湿度等。
-
4.4 其他种类水果品质无损检测研究
-
无损检测技术目前在部分水果上已经得到应用,但仍有大量水果的品质无损检测技术存在空白。 尤其是针对大型厚皮水果,其内部品质无损检测技术较少。研发更多种类水果品质无损检测技术,尤其是克服尚存在检测难点的水果,有利于该技术的普及、推广与进一步发展。
-
(责任编辑 白雪娜)
-
陆华忠,博士,二级教授,博士生导师,现任广东省农业科学院院长、 党委副书记,国务院学位委员会农业工程学科评议组第七届委员,广东省科协副主席,中国农业工程学会副理事长,广东省农业机械学会副理事长, 国家荔枝龙眼产业技术体系机械研究室主任、岗位科学家。 主要从事农业机械化工程、现代农业装备、车辆工程等研究。承担国家科技支撑计划、广东省高校产学研重大项目、国家自然科学基金等课题30 多项。发表科技论文150 多篇,授权发明专利40 多项,授权软件著作权20 多项, 参与获省部级教学科研成果奖励12 项。指导在读和已毕业博士、硕士研究生70多名,主编和参编出版教材和著作9部。 “主动适应经济建设需要,办好有特色的交通运输工程专业”获广东省教学成果二等奖。“水田耕整机驱动轮优化设计的研究”获农业部科技进步三等奖;“果蔬气调保鲜运输关键技术与装备”“水稻精量旱直播技术及机具”, 通过广东省科技厅成果鉴定,达国际先进水平。曾获“南粤教坛”新秀、广东省“技工教育教坛”新秀。
-
参考文献
-
[1]
LI Y,HAN M Q,LIN F,TEN Y,LIN J,ZHU D H,GUO P,WENG Y B,CHEN L S.Soil chemical properties,'Guanximiyou' pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province,China[J].Journal of Soil Science & Plant Nutrition,2015,15:263-269.DOI:10.4067/S0718-95162015005000029.[百度学术] -
[2] 朱志东.不同坡向、坡位对甜橘柚生长和生理指标的影响[J].食品安全导刊,2016(9):126-128.DOI:10.16043/j.cnki.cfs.2016.09.067.[百度学术]
-
[3]
XIA Y,HUANG W,FAN S,LI J,CHEN L.Effect of fruit moving speed on online prediction of soluble solids content of apple using Vis/NIR diffuse transmission[J].Journal of Food Process Engineering,2018,41(8):e12915.DOI:10.1111/jfpe.12915.[百度学术] -
[4]
NCAMA K,OPARA U L,TESFAY S Z,FAWOLE O A,MAGWAZA L S.Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of‘Valencia’orange(Citrus sinensis)and‘Star Ruby’grapefruit(Citrus x paradisi Macfad)[J].Journal of FoodEngineering,2017,193:86-94.DOI:10.1016/j.jfoodeng.2016.08.015.[百度学术] -
[5]
UWADAIRA Y,SEKIYAMA Y,IKEHATA A.An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy[J].Heliyon,2018,4(2):e531.DOI:10.1016/j.heliyon.2018.e00531.[百度学术] -
[6]
XU S,LU H,FERENCE C,QIU G,LIANG X.Rapid nondestructive detection of water content and granulation in postharvest“Shatian” pomelo using visible/near-infrared spectroscopy[J].Biosensors,2020,10(4):41.DOI:10.3390/bios10040041.[百度学术] -
[7]
POURDARBANI R,SABZI S,KALANTARI D,KARIMZADEH R,ILBEYGI E,ARRIBAS J I.Automatic non-destructive video estimation of maturation levels in Fuji apple(Malus Malus pumila)fruit in orchard based on colour(Vis)and spectral(NIR)data[J].Biosystems Engineering,2020,195:136-151.DOI:10.1016/j.biosystemseng.2020.04.015.[百度学术] -
[8]
SHEN F,ZHANG B,CAO C,JIANG X.On‐line discrimination of storage shelf‐life and prediction of post‐harvest quality for strawberry fruit by visible and near infrared spectroscopy[J].Journal of Food Process Engineering,2018,41(7):e12866.DOI:10.1111/jfpe.12866.[百度学术] -
[9]
JAMSHIDI B.Ability of near-infrared spectroscopy for nondestructive detection of internal insect infestation in fruits:Metaanalysis of spectral ranges and optical measurement modes[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,225:117479.DOI:10.1016/j.saa.2019.117479.[百度学术] -
[10]
RIVERA N V,GÓMEZ-SANCHIS J,CHANONA-PÉREZ J,CARRASCO J J,MILLÁN-GIRALDO M,LORENTE D,CUBERO S,BLASCO J.Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning[J].Biosystems Engineering,2014,122:91-98.DOI:10.1016/j.biosystemseng.2014.03.009.[百度学术] -
[11]
POMARES VICIANA T,MARTÍNEZ VALDIVIESO D,FONT R,GÓMEZ P,DEL RÍO CELESTINO M.Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy[J].Journal of the Science of Food and Agriculture,2018,98(5):1703-1711.DOI:10.1002/jsfa.8642.[百度学术] -
[12]
TILAHUN S,SEO M H,HWANG I G,KIM S H,CHOI H R,JEONG C S.Prediction of lycopene and β-carotene in tomatoes by portable chromameter and VIS/NIR spectra[J].Postharvest Biology and Technology,2018,136:50-56.DOI:10.1016/j.postharvbio.2017.10.007.[百度学术] -
[13]
ARENDSE E,FAWOLE O A,MAGWAZA L S,OPARA U L.Nondestructive characterization and volume estimation of pomegranate fruit external and internal morphological fractions using X-ray computed tomography[J].Journal of Food Engineering,2016,186:42-49.DOI:10.1016/j.jfoodeng.2016.04.011.[百度学术] -
[14]
ARENDSE E,FAWOLE O A,MAGWAZA L S,OPARA U L.Estimation of the density of pomegranate fruit and their fractions using X-ray computed tomography calibrated with polymeric materials [J].Biosystems Engineering,2016,148:148-156.DOI:10.1016/j.biosystemseng.2016.06.009.[百度学术] -
[15]
TOLLNER E W,HUNG Y,UPCHURCH B L,PRUSSIA S E.Relating X-ray absorption to density and water content in apples [J].Transactions of the ASAE,1992,35(6):1921-1928.DOI:10.13031/2013.28816.[百度学术] -
[16]
耿一曼.X 射线无损检测技术在柚子品质检测中的应用研究[D].福州:福建农林大学,2012.[百度学术]GENG Y M.Application study of X-ray in grapefruit quality testing[D].Fuzhou:Fujian Agriculture and Forestry University,2012.[百度学术] -
[17]
LAMMERTYN J,DRESSELAERS T,Van HECKE P,JANCSÓK P,WEVERS M,NICOLAI B M.MRI and X-ray CT study of spatial distribution of core breakdown in‘Conference’pears[J].Magnetic Resonance Imaging,2003,21(7):805-815.DOI:10.1016/S0730-725X(03)00105-X.[百度学术] -
[18]
LANDAHL S,TERRY L A.Non-destructive discrimination of avocado fruit ripeness using laser Doppler vibrometry[J].Biosystems Engineering,2020,194:251-260.DOI:10.1016/j.biosystemseng.2020.04.001.[百度学术] -
[19]
HOSOYA N,MISHIMA M,KAJIWARA I,MAEDA S.Nondestructive firmness assessment of apples using a non-contact laser excitation system based on a laser-induced plasma shock postharvbio.2017.01.014.[百度学术] -
[20]
刘燕德,刘涛,孙旭东,欧阳爱国,郝勇.拉曼光谱技术在食品质量安全检测中的应用[J].光谱学与光谱分析,2010,30(11):3007-3012.DOI:10.3964/j.issn.1000-0593(2015)09-2567-06.[百度学术]LIU Y D,LIU T,SUN X D,OUYANG A G,HAO Y.Application of raman spectroscopy technique to food quality and safety determination [J].Spectroscopy and Spectral Analysis,2010,30(11):3007-3012.DOI:10.3964/j.issn.1000-0593(2015)09-2567-06.[百度学术] -
[21]
WANG P,WU L,LU Z,LI Q,YIN W,DING F,HAN H.Geckoinspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables[J].Analytical Chemistry,2017,89(4):2424-2431.DOI:10.1021/acs.analchem.6b04324.[百度学术] -
[22]
NEKVAPIL F,BREZESTEAN I,BARCHEWITZ D,GLAMUZINA B,CHIŞ V,PINZARU S C.Citrus fruits freshness assessment using Raman spectroscopy[J].Food Chemistry,2018,242:560-567.DOI:10.1016/j.foodchem.2017.09.105.[百度学术] -
[23]
TREBOLAZABALA J,MAGUREGUI M,MORILLAS H,de DIEGO A,MADARIAGA J M.Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato(Solanum lycopersicum)fruits [J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2017,180:138-143.DOI:10.1016/j.saa.2017.03.024.[百度学术] -
[24]
ZHANG H B,MITOBE K,YOSHIMURA N.Application of Terahertz imaging to water content measurement[J].Japanese Journal of Applied Physics,2008,47(10R):8065.DOI:10.1143/JJAP.47.8065.[百度学术] -
[25]
王强,王孝伟,马冶浩.基于THz时域光谱技术的水果杀菌剂农药检测与鉴别[J].中南大学学报(自然科学版),2012,43(8):197-201.[百度学术]WANG Q,WANG X W,MA Z H.Application of terahertz time-domain spectrum in fruits and bactericide mixtures detection and classification [J].Journal of Central South University,2012,43(8):197-201.[百度学术] -
[26]
LEE D,KIM G,SON J.Optical characteristics of pesticides measured by terahertz time domain spectroscopy:Fifth Asia-Pacific Optical Sensors Conference,2015[C].International Society for Optics and Photonics.Jeju,Korea.DOI:10.1117/12.2184387.[百度学术] -
[27]
HAO G,LIU J,HONG Z.Determination of soluble solids content in apple products by terahertz time-domain spectroscopy:International Symposium on Photoelectronic Detection and Imaging 2011:Terahertz Wave Technologies and Applications,2011[C].International Society for Optics and Photonics.DOI:10.1117/12.2184387.[百度学术] -
[28]
LI X,WEI Y,XU J,FENG X,WU F,ZHOU R,JIN J,XU K,YU X,HE Y.SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology [J].Postharvest Biology and Technology,2018,143:112-118.DOI:10.1016/j.postharvbio.2018.05.003.[百度学术] -
[29]
LU R,PENG Y.Hyperspectral scattering for assessing peach fruit firmness[J].Biosystems Engineering,2006,93(2):161-171.DOI:10.1016/j.biosystemseng.2005.11.004.[百度学术] -
[30]
LU R.Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images[J].Sensing and Instrumentation for Food Quality and Safety,2007,1(1):19.DOI:10.1007/s11694-006-9002-9.[百度学术] -
[31]
LÜ Q,TANG M.Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification[J].Procedia Environmental Sciences,2012,12:1172-1179.DOI:10.1016/j.proenv.2012.01.404.[百度学术] -
[32]
WANG J,NAKANO K,OHASHI S,KUBOTA Y,TAKIZAWA K,SASAKI Y.Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging[J].Biosystems Engineering,2011,108(4):345-351.DOI:10.1016/j.biosystemseng.2011.01.006.[百度学术] -
[33]
IQBAL S M,GOPAL A,SANKARANARAYANAN P E,NAIR A B.Classification of selected citrus fruits based on color using machine vision system[J].International Journal of Food Properties,2016,19(2):272-288.DOI:10.1080/10942912.2015.1020439.[百度学术] -
[34]
GONGAL A,KARKEE M,AMATYA S.Apple fruit size estimation using a 3D machine vision system[J].Information Processing in Agriculture,2018,5(4):498-503.DOI:10.1016/j.inpa.2018.06.002.[百度学术] -
[35]
KHEIRALIPOUR K,PORMAH A.Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks[J].Journal of Food Process Engineering,2017,40(6):e12558.DOI:10.1111/jfpe.12558.[百度学术] -
[36]
ZHANG C,ZOU K,PAN Y.A Method of apple image segmentationbased on color-texture fusion feature and machine learning[J].Agronomy,2020,10(7):972.DOI:10.3390/agronomy10070972.[百度学术] -
[37]
孙宝霞,汤林越,何志良,邹湘军,熊俊涛.基于机器视觉的采后荔枝表皮微损伤实时检测[J].农业机械学报,2016,47(7):35-41.DOI:10.6041/j.issn.1000-1298.2016.07.006.[百度学术]SUN B X,TANG L Y,HE Z L,ZOU X J,XIONG J T.Real-time detection of micro-damage on peel of postharvest litchi based on machine vision[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):35-41.DOI:10.6041/j.issn.1000-1298.2016.07.006.[百度学术] -
[38]
XU S,LU H,SUN X.Quality detection of postharvest litchi based on electronic nose:a feasible way for litchi fruit supervision during dirculation process[J].Hortscience,2020,1(aop):1-7.DOI:10.21273/HORTSCI14750-19.[百度学术] -
[39]
XU S,SUN X,LU H,YANG H,RUAN Q,HUANG H,CHEN M.Detecting and monitoring the f lavor of tomato(Solanum lycopersicum)under the impact of postharvest handlings by physicochemical parameters and electronic nose[J].Sensors,2018,18(6):1847.DOI:10.3390/s18061847.[百度学术] -
[40]
徐赛,陆华忠,周志艳,吕恩利,杨径.基于电子鼻的果园荔枝成熟阶段监测[J].农业工程学报,2015,31(18):240-246.DOI:10.11975/j.issn.1002-6819.2015.18.033.[百度学术]XU S,LU H Z,ZHOU Z Y,LU E L,YANG J.Electronic nose monitoring mature stage of litchi in orchard[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(18):240-246.DOI:10.11975/j.issn.1002-6819.2015.18.033.[百度学术] -
[41]
HUANG L,MENG L,ZHU N,WU D.A primary study on forecasting the days before decay of peach fruit using near-infrared spectroscopy and electronic nose techniques[J].Postharvest Biology and Technology,2017,133:104-112.DOI:10.1016/j.postharvbio.2017.07.014.[百度学术] -
[42]
YANG X,CHEN J,JIA L,YU W,WANG D,WEI W,LI S,TIAN S,WU D.Rapid and non-destructive detection of compression damage of yellow peach using an electronic nose and chemometrics[J].Sensors,2020,20(7):1866.DOI:10.3390/s20071866.[百度学术] -
[43]
FATHIZADEH Z,ABOONAJMI M,BEYGI S R H.Nondestructive firmness prediction of apple fruit using acoustic vibration response[J].Scientia Horticulturae,2020,262:109073.DOI:10.1016/j.scienta.2019.109073.[百度学术] -
[44]
DIEZEMA IGLESIAS B,RUIZ-ALTISENT M,ORIHUEL B.Acoustic impulse response for detecting hollow heart in seedless watermelon:International Conference:Postharvest Unlimited 599,2002[C].Leuven,Belgium.DOI:10.17660/ActaHortic.2003.599.29.[百度学术] -
[45]
CHEN X,YUAN P,DENG X.Watermelon ripeness detection by wavelet multiresolution decomposition of acoustic impulse response signals[J].Postharvest Biology and Technology,2018,142:135-141.DOI:10.1016/j.postharvbio.2017.08.018.[百度学术] -
[46]
LASHGARI M,MOHAMMADIGOL R.Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques[J].Iran Agricultural Research,2016,35(2):65-70.DOI:10.22099/IAR.2016.3799.[百度学术] -
[47]
ATES K,OZEN S,CARLAK H F.The freshness analysis of an apple and a potato using dielectric properties at the microwave frequency region:2017 Progress In Electromagnetics Research SymposiumSpring(PIERS),2017[C].IEEE.[百度学术] -
[48]
BIAN H X,TU P,HUA LI X,SHI P.Quality predictions for bruised apples based on dielectric properties[J].Journal of Food Processing and Preservation,2019,43(8):e14006.DOI:10.1111/jfpp.14006.[百度学术] -
[49]
SOLTANI M,ALIMARDANI R,OMID M.Evaluating banana ripening status from measuring dielectric properties[J].Journal of Food Engineering,2011,105(4):625-631.DOI:10.1016/j.jfoodeng.2011.03.032.[百度学术] -
[50]
SIPAHIOGLU O,BARRINGER S A.Dielectric properties of vegetables and fruits as a function of temperature,ash,and moisture content[J].Journal of Food Science,2003,68(1):234-239.DOI:10.1111/j.1365-2621.2003.tb14145.x.[百度学术] -
[51]
NELSON S O.Dielectric properties of some fresh fruits and vegetables at frequencies of 2.45 to 22 GHz[J].Transactions of the ASAE,1983,26(2):613-616.DOI:10.1016/0021-8634(83)90120-8.[百度学术] -
[52]
GUO W,FANG L,LIU D,WANG Z.Determination of soluble solids content and firmness of pears during ripening by using dielectric spectroscopy[J].Computers and Electronics in Agriculture,2015,117:226-233.DOI:10.1016/j.compag.2015.08.012.[百度学术] -
[53]
SHAARANI S M,CARDENAS-BLANCO A,AMIN M G,SOON N G,HALL L D.Monitoring development and ripeness of oil palm fruit(Elaeis guneensis)by MRI and bulk NMR[J].International Journal of Agriculture and Biology,2010,12(1):101-105.DOI:10.3763/ijas.2009.0478.[百度学术] -
[54]
GALED G,FERNÁNDEZ-VALLE M E,MARTıNEZ A,HERAS A.Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions[J].Magnetic Resonance Imaging,2004,22(1):127-137.DOI:10.1016/j.mri.2003.05.006.[百度学术] -
[55]
LÉTAL J,JIRÁK D,ŠUDERLOVÁ L,HÁJEK M.MRI‘texture’analysis of MR images of apples during ripening and storage[J].LWT-FoodScience and Technology,2003,36(7):719-727.DOI:10.1016/S0023-6438(03)00099-9.[百度学术] -
[56]
MAZHAR M,JOYCE D,COWIN G,BRERETON I,HOFMAN P,COLLINS R,GUPTA M.Non-destructive 1H-MRI assessment of flesh bruising in avocado(Persea americana M.)cv.Hass[J].Postharvest Biology and Technology,2015,100:33-40.DOI:10.1016/j.postharvbio.2014.09.006.[百度学术] -
[57]
MELADO-HERREROS A,MUÑOZ-GARCÍA M,BLANCO A,VAL J,FERNÁNDEZ-VALLE M E,BARREIRO P.Assessment of development in apples with MRI:Effect of fruit location in the canopy[J].Postharvest Biology and Technology,2013,86:125-133.DOI:10.1016/j.postharvbio.2013.06.030.[百度学术] -
[58]
王淼,张晶,贺妍,卢嘉,郭静,戴超,王凤忠,范蓓.基于低场核磁共振的柑橘汁胞粒化评级[J].农业工程学报,2016,34(7):290-295.DOI:10.11975/j.issn.1002-6819.2016.07.041[百度学术].WANG M,HE Y,LU J,GUO J,DAI C,WANG F Z,FAN P.Evaluation of juicy sac granulation in citrus with low field nuclear magnetic resonance[J].Transactions of the Chinese Society of Agricultural Engineering,2016,34(7):290-295.DOI:10.11975/j.issn.1002-6819.2016.07.041.[百度学术] -
[59]
LIU B,ZHOU P,LIU X,SUN X,LI H,LIN M.Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures[J].Food and Bioprocess Technology,2013,6(3):710-718.DOI:10.1007/s11947-011-0774-5.[百度学术] -
[60]
WENG S,QIU M,DONG R,WANG F,HUANG L,ZHANG D,ZHAO J.Fast detection of fenthion on fruit and vegetable peel using dynamic surface-enhanced Raman spectroscopy and random forests with variable selection[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,200:20-25.DOI:10.1016/j.saa.2018.04.012.[百度学术]
-
摘要
针对市场上存在的水果品质良莠不齐的现状及消费者对水果品质逐步提高的需求,水果售前品质分级显得尤为重要。水果售前品质分级可有效保证市场品质、促进品牌打造、提升商品竞争力、指导采后处理。 已有的理化指标检测法和感官评定法均存在检测效率低、劳动强度大等缺陷,无法完全满足实际产业大批量水果无损分级的要求。无损检测作为一种新兴技术在水果品质分级上具有广泛的市场需求和应用前景,至今已形成了光谱、机器视觉、高光谱成像、电子鼻、声特征、介电特性和低场核磁共振等系列水果品质无损检测方法。 这些方法针对水果结构、外形、品质指标等差异检测时各具优势,但受环境噪声、漂移噪声、样本差异、检测效率和检测成本等因素影响,并未全部应用于实际生产。介绍了水果品质无损检测领域已有技术的特性及其可行对应检测的水果品质参数,阐述分析了无损检测技术在水果品质分级行业的实际应用现状,讨论了水果品质无损检测领域尚存在的难点,并对下一步研究方向提出建议。
Abstract
Due to the status of inhomogeneity of fruit quality and people’s increasing demand for high fruit quality, it is very important to classify the presale quality of fruits. The grading of presale fruit quality can effectively guarantee market quality, promote brand creation, improve commodity competitiveness, and instruct postharvest handling, etc. Existing physicochemical index detection method and sensory evaluation method are both characterized by low efficiency and high labor intensity, which can not meet the requirements of mass quality grading of fruit industry completely. As an emerging technology, nondestructive detection has wide market requirement and application prospect in fruit quality grading. So far, a series of fruit quality nondestructive detection methods such as spectroscopy, machine vision, hyperspectral imaging, electronic nose, acoustic feature, dielectric property, and low-field nuclear magnetic resonance have been formed. These methods have advantages in the detection of differences in structures, shapes, and quality indexes of target fruits. However, due to the influences of environment noise, drift noise, sample difference, detection efficiency and detection cost, not all of them are applied to practical industry. This paper introduced the characteristics of the existing nondestructive detection methods and their feasibility for the detection of corresponding fruit quality parameters, clarified and analyzed the application situation in practical fruit quality grading industry of the nondestructive detection methods, discussed the difficulties in the field of fruit quality nondestructive detection, and provided suggestions for the next researches.