广东农业科学  2021, Vol. 48 Issue (7): 9-16   DOI: 10.16768/j.issn.1004-874X.2021.07.002.
0

文章信息

引用本文
潘阳阳, 黄道强, 王重荣, 李宏, 周德贵, 王志东, 陈宜波, 赵雷, 龚蓉, 周少川. 香稻Badh2基因单倍型及香气成分2-乙酰-1-吡咯啉代谢通路的研究进展[J]. 广东农业科学, 2021, 48(7): 9-16.   DOI: 10.16768/j.issn.1004-874X.2021.07.002
PAN Yangyang, HUANG Daoqiang, WANG Chongrong, LI Hong, ZHOU Degui, WANG Zhidong, CHEN Yibo, ZHAO Lei, GONG Rong, ZHOU Shaochuan. Research Advances of Haplotype Variation at Badh2 Gene and 2-Acetyl-1-pyrroline Bi osynthetic Pathway in Aromatic Rice[J]. Guangdong Agricultural Sciences, 2021, 48(7): 9-16.   DOI: 10.16768/j.issn.1004-874X.2021.07.002

基金项目

广东省农业科学院创新基金(202101); 广东省农业科学院农业优势产业学科团队建设项目(202111TD); 广东省农业科学院院长专项(201938)

作者简介

潘阳阳(1986—),男,助理研究员,研究方向为优质稻品质形成机制,E-mail:yangyangpan@126.com.

通讯作者

周少川(1962—),男,研究员,研究方向为水稻遗传育种,E-mail:xxs123@163.com.

文章历史

收稿日期:2021-04-14
香稻Badh2基因单倍型及香气成分2-乙酰-1-吡咯啉代谢通路的研究进展
潘阳阳 , 黄道强 , 王重荣 , 李宏 , 周德贵 , 王志东 , 陈宜波 , 赵雷 , 龚蓉 , 周少川     
广东省农业科学院水稻研究所/广东省水稻育种新技术重点实验室, 广东 广州 510640
摘要:香米因其具有独特的香味,长期以来深受国际市场青睐。我国香稻种植历史悠久,香稻资源丰富,但缺乏高端优质香米品牌。当前消费者对优质香米的需求不断加大,进而加快了我国优质香稻的育种进程。稻米香味主要由编码甜菜碱醛脱氢酶基因Badh2控制,该基因功能突变能够导致稻米香气成分2-乙酰-1-吡咯啉(2AP)的积累。随着水稻功能基因组学的发展,香稻资源中Badh2基因单倍型得以深入挖掘,2AP生物合成通路被初步解析,它们将进一步加快香稻育种的进程。综述了目前在香稻资源中发现的19种Badh2基因单倍型,重点分析不同类型单倍型的地域分布特性,比较不同单倍型之间的2AP含量;同时阐述2AP生物合成通路涉及的谷氨酸- 脯氨酸代谢途径和多胺代谢途径研究现状,总结香稻籽粒中2AP的分布特征,并对目前两种籽粒2AP积累的理论机制进行比较分析,提出利用多组学手段从籽粒动态发育过程研究2AP生物合成通路变化特性的策略,以期为香稻资源基因利用和籽粒2AP特异富集香稻品种的培育提供参考。
关键词香稻    香味基因    单倍型    2-乙酰-1-吡咯啉    代谢通路    多胺    
Research Advances of Haplotype Variation at Badh2 Gene and 2-Acetyl-1-pyrroline Bi osynthetic Pathway in Aromatic Rice
PAN Yangyang , HUANG Daoqiang , WANG Chongrong , LI Hong , ZHOU Degui , WANG Zhidong , CHEN Yibo , ZHAO Lei , GONG Rong , ZHOU Shaochuan     
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
Abstract: Aromatic rice has long been favored by the world rice trade because of its pleasant scent. China has a long history of aromatic rice cultivation and diverse aromatic rice accessions. However, there is a real lack of top aromatic rice brands. Nowadays, there is an increasing demand for good-quality aromatic rice, leading to speed up the breeding process of high quality of aromatic rice varieties. The Badh2, encoding betaine aldehyde dehydrogenase gene, is the major genetic basis of fragrance in rice. The loss-of-function alleles of Badh2 accounts for accumulation of 2-acetyl-1-pyrroline(2AP), which is widely regarded as the main compound responsible for the characteristic aroma. With the development of rice functional genomics, the Badh2 gene haplotypes in aromatic rice resources have been deeply explored and the biosynthesis pathway of 2AP has been preliminarily analyzed, which will speed up the process of aromatic rice breeding. This review focused on 19 Badh2 gene haplotypes which were found in aromatic rice accessions. The geographic locations of different types of haplotypes were mainly analyzed and the correlation between these haplotypes and 2AP concentrations were compared. The research advances of glutamate-proline metabolic pathway and polyamine metabolic pathway involved in 2AP biosynthesis pathway were demonstrated. Meanwhile, the 2AP distribution characteristics in aromatic rice grains were summarized. Two theoretical mechanisms of 2AP accumulation in grains were compared and a strategy to study the 2AP biosynthesis pathway changes at various grain developmental stages by multi-omics methods was proposed, with a view to serve as an inspiration for genetic utilization of aromatic rice resources and breeding of rice varieties with 2AP specific enrichment.
Key words: aromatic rice    fragrance gene    haplotype    2-acetyl-1-pyrroline    metabolic pathway    polyamine    

香米在蒸煮过程中会散发出令人愉悦的独特香味,被誉为水稻中的珍品,具有较高的经济价值。而稻米香味是国际市场上决定香米价格的重要因素之一[1],优质香米价格是非香稻的3倍之多[2]。传统香稻品种具有很强的地域特性,泰国的茉莉香米、印度与巴基斯坦的巴斯马蒂香米长期占据国际香米市场主要份额,近年来越南、柬埔寨等国的优质香米出口量也在不断加大。我国作为全球最大的稻米生产国和消费国[3],市场供需不平衡,每年需进口一定数量的优质香米以满足国内高端市场需求。因此,加强香稻品种选育,打造我国香米品牌以取代泰国香米,对于提升我国香米国际影响力具有重要的经济和社会效益。

我国具有丰富的香稻资源,香稻种植历史可以上溯到3 000多年前。由于香稻多为地方性品种,兼受产量、抗性和改良技术等条件限制,导致我国香稻生产长期不被重视[4-5]。当前,我国稻米消费市场面临转型升级,优质且具有香味的大米深受市场青睐,水稻育种由注重产量向产量品质并重的方向转型。2018—2020年,全国农业技术推广服务中心连续3年举办全国优质稻品种食味品质鉴评会,有力推动我国水稻育种向优质稻育种方向转型。

香味物质的挖掘和香味基因的遗传调控是香稻育种的两个根本问题,长期以来备受关注。前人在稻米中发现了上百种挥发性香味化合物[6-9],随着检测技术水平的提高和研究的不断深入,1983年2-乙酰-1-吡咯啉(2-acetyl-1- pyrroline,2AP)被确认为稻米特征香气成分[10]。水稻香味基因的遗传研究起始于20世纪70年代,早期研究推断香味基因可能由单个[11]、2个[12]或3个[13]隐性基因控制。随着分子标记技术和水稻功能基因组学的发展,Ahn等[14]利用分子标记技术将香味基因定位在第8号染色体上,Bradbury等[15]图位克隆到香味主效基因Badh2(LOC_Os08g32870),该基因第7外显子8 bp的缺失和3个碱基的突变致使基因功能失活,最终引起2AP积累。

随着基因组测序技术快速发展,研究者们在香稻资源中挖掘出了更多功能性突变的Badh2单倍型[16-17],这为香稻育种提供了丰富的香稻基因资源;同时,对香味基因的生化基础和2AP生物合成途径开展了细致研究[18-19],初步揭示了2AP的生物合成通路[20]。但香味遗传性状十分复杂,不同品种稻米的2AP含量存在明显差异、相同品种在不同种植条件下的2AP含量也不相同[2, 21-23],而如何特异提高精米2AP含量也是香米产业发展面临的关键问题[1],这些问题的解决需要进一步解析2AP生物合成机制,尤其要深入认识籽粒发育过程中2AP积累机制。本文对已发现的香稻Badh2基因单倍型及不同单倍型香稻中2AP含量等的研究进行综述,重点阐述2AP生物合成通路的研究进展,提出从籽粒发育动态角度研究2AP积累机制,为香稻资源相关基因利用、籽粒特异富集2AP的香稻品种研发提供依据。

1 香稻Badh2基因的单倍型 1.1 香味基因Badh2的功能研究及利用

水稻Badh2基因编码甜菜碱醛脱氢酶,该蛋白能够催化甜菜碱醛合成甜菜碱,从而在抗盐害、冷害和热害等逆境胁迫中发挥重要作用[15, 24]。研究发现,水稻中存在1个BADH2同源蛋白BADH1,且两个蛋白功能可能发生了明显分化:Fitzgerald等[25]发现非香稻中这两个蛋白均发挥功能,香稻和非香稻品种中BADH1的转录本并不存在差异,BADH1在响应盐胁迫中发挥主要作用;He等[26]发现BADH1与苗期水稻耐盐性显著相关,而BADH2只与稻米香味性状密切关联;BADH2在pH 10的碱性条件下具有最大催化活性,催化底物主要为4- 氨基丁醛,而BADH1在pH 9.5条件下具有催化活性,且对4- 氨基丁醛催化活性极低[18]

表达模式分析表明,Badh2在水稻的地上部分均能表达,亚细胞定位发现BADH2蛋白主要定位于细胞质[19]。Baicharoen等[27]深入解析了BADH2蛋白的3D结构,发现该蛋白包含NAD+结合域、底物结合域和寡聚化结合域,揭示了关键氨基酸残基如N162、C294、E260在催化反应中的关键作用,为优质香稻改良提供了理论基础。随着分子标记辅助育种、基因编辑育种等技术的发展,通过RNAi、TALEN等生物技术对Badh2进行敲减或敲除,已成功获得转基因香稻材料[28-30],随着CRISPR/Cas9基因编辑系统在作物育种中的广泛应用,该技术已成为快速获得香稻材料的重要方法[31-32]

1.2 香稻资源中Badh2单倍型的挖掘

基于转基因存在的潜在风险挑战,挖掘更多自然变异的香味基因单倍型对于丰富优质香稻育种多样性具有重要意义。通过对香稻资源的序列分析,目前在Badh2基因编码区共发现15种功能性突变的单倍型(表 1),这些变化的核苷酸位点分布在第1、2、4、7、8、10、12、13、14外显子,以小片段序列插入或删除(Indel)和单核苷酸变异(SNP)为主[16-17, 33-35]

表 1 香稻Badh2基因突变类型 Table 1 Type of alleles of Badh2 in aromcotic rice

Badh2基因型分布和基因频率分析,badh2-E7(第7外显子8 bp的缺失和3个碱基的突变)是最常见的突变类型,广泛分布在世界主要稻米生产国,如著名香籼稻KDML105和Basmati370、美国香粳稻Della、我国优质稻花香2号、广东丝苗米代表品种美香占2号和象牙香占等均为这种单倍型,表明在较早的香稻育种过程中,这种单倍型被育种家无意识选择并广泛应用。其余14种单倍型具有较强的地域分布特性,相应的香稻品种数量较少,且多在粳稻中被发现,如江苏的南粳系列均为badh2-E2.1单倍型,浙江和广西的香糯稻为badh2-E4-5单倍型,这些香味基因型可能受特殊地理限制,形成了特色香稻品种。此外,多项研究发现Badh2基因启动子区域变异也能够导致2AP积累(表 1),目前共发现4种单倍型[36-39],主要表现为Badh2基因5′ UTR相应序列缺失。分子功能研究表明,这些材料中2AP的积累是由于BADH2蛋白含量显著下降引起的。

充分利用香稻资源中丰富多样的Badh2单倍型进行常规杂交育种,一方面能规避转基因风险,另一方面可能创制出不同香味类型的香稻品种。当前,对大多数Badh2单倍型已开发出特定的分子标记,不仅可以用于筛选香稻基因型,而且在香稻的分子辅助育种进程中发挥重要作用[34-35]

1.3 不同Badh2单倍型香稻的2AP含量分布特征

不同Badh2突变类型材料中的2AP含量不同(表 1),BADH2蛋白活性是影响2AP积累的重要因素之一。通过对Badh2基因启动子变异的香稻材料、RNAi转基因香稻材料的分析,发现BADH2蛋白水平显著降低[28, 40];Kovach等[16]研究发现,发生1个或2个碱基插入或缺失的单倍型材料(如badh2-E1badh2-E10.1badh2-E14.1)的2AP含量整体高于单碱基替换或3 bp插入的单倍型材料(如badh2-E10.3badh2-E13.1badh2-E14.2),表明2AP含量与BADH2蛋白活性密切相关,但对于BADH2蛋白活性下降到何种程度才能导致2AP积累这个问题尚未研究。另外,相同Badh2单倍型材料之间,2AP含量仍然存在较大差异,这与遗传背景不同直接相关。

目前,研究Badh2单倍型与2AP含量关系最大的障碍在于缺乏遗传背景相同、Badh2变异类型不同的遗传材料,而利用CRISPR/Cas9对非香稻Badh2的不同外显子、启动子区段设计靶点,获得不同变异类型的香稻材料,能有效解释Badh2单倍型与2AP含量之间的关系,同时也是对高积累2AP香稻创制的有益探索。

2 2AP生物合成通路及其在香稻籽粒中的分布特征 2.1 2AP代谢通路相关研究

不同香稻品种、不同栽培条件均导致2AP含量差异,这与2AP生物合成通路相关代谢物的变化密切相关。BADH2能够催化4- 氨基丁醛氧化,从而生成4- 氨基丁酸,而香味基因失活时,4- 氨基丁醛能够直接环化生成1- 吡咯啉,1- 吡咯啉再与乙酰基团结合,无需酶促反应即可合成2AP[41-42],研究发现,1- 吡咯啉是2AP合成中重要的限制性底物[43]。根据1-吡咯啉的来源不同,2AP生物合成途径主要分为谷氨酸- 脯氨酸代谢和多胺代谢两种途径[18, 20, 44],如图 1所示,谷氨酸和脯氨酸分别在脯氨酸脱氢酶(ProDH)和1- 吡咯啉-5- 羧酸合成酶(P5CS)的作用下,生成中间产物1- 吡咯啉-5- 羧酸(P5C),P5C继而转化为1- 吡咯啉;多胺代谢能够生成中间产物4- 氨基丁醛,4- 氨基丁醛在BADH2酶失活的情况下环化为1- 吡咯啉。

图 1 2AP生物合成通路示意图 Fig. 1 Schematic diagram of the 2AP biosynthetic pathway ADC:精氨酸脱羧酶;AgmAH:鲱精胺酶;ARG:精氨酸酶;badh2:甜菜碱醛脱氢酶2基因突变;DAO:二胺氧化酶;OAT:鸟氨酸转氨酶;ODC:鸟氨酸脱羧酶;P5CDH:吡咯啉-5-羧酸脱氢酶;P5CR:吡咯啉-5-羧酸还原酶;P5CS:吡咯啉-5-羧酸合成酶;PAO:多胺氧化酶;ProDH:脯氨酸脱氢酶;SpdS:亚精胺合成酶;SpmS:精胺合成酶 ADC: Arginine decarboxylase; AgmAH: Agmatine amidinohydrolase; ARG: Arginase; badh2: Betaine aldehyde dehydrogenase 2; gene mutation DAO: Diamine oxidase; OAT: Ornithine aminotransferase; ODC: Ornithine decarboxylase; P5CDH: Pyrroline-5-carboxylate dehydrogenase; P5CR: Pyrrolidine-5-carboxylate reductase; P5CS: Pyrrolidine-5-carboxylate synthetase; PAO: Polyamine oxidase; ProDH: Proline dehydrogenase; SpdS: Spermidine synthase; SpmS: Spermine synthase

当前,对谷氨酸- 脯氨酸代谢途径的研究主要集中在脯氨酸含量以及P5CSProDH两个关键基因表达变化对2AP积累的影响方面。Huang等[45]研究发现,香稻中P5CS酶活显著高于非香稻;在Badh2启动子区段变异的香稻“Velchi”中脯氨酸含量、P5CS转录水平和酶活均高于非香稻[39];在香稻中过表达P5CS,籽粒中2AP含量可提高2倍[46]。同时,增香栽培研究大多关注谷氨酸- 脯氨酸通路对2AP含量的影响:Mo等[47]对香稻遮光处理后,脯氨酸含量显著提高,2AP含量提高59%;Bao等[48]对抽穗期香稻进行水分干湿灌溉处理,相关籽粒中ProDH、P5CS和二胺氧化酶(DAO)活性显著提高,2AP含量提高了45%;适当的水氮调控及锌、硒等处理[49-51]均可提高谷氨酸- 脯氨酸代谢途径活性从而提高2AP含量。但目前的关键问题在于尚无直接证据证实植物体内P5C能够转化为1- 吡咯啉,从而制约了对籽粒2AP含量的精准调控。

多胺在植物生长和发育过程中起重要的调控作用[52-53],同时在多种逆境胁迫中发挥重要作用,如冷害、热害、盐胁迫和病虫害等[54-57];已有研究表明,多胺参与水稻籽粒灌浆的调控,对籽粒充实度、稻米品质、种子活力等均有影响[58-60],腐胺、精胺和亚精胺等多胺物质经酶催化最终能够生成4- 氨基丁醛[61-62],但多胺物质与籽粒2AP积累的相关性研究未见报道。因此,加强香稻籽粒发育过程中多胺代谢对2AP含量的影响机制研究,挖掘多胺途径中调控2AP含量的关键代谢物和关键基因,将有助于实现籽粒2AP含量的定向提高。

2.2 香稻籽粒中2AP分布特征及积累机制研究

精米中2AP含量一般明显低于糙米,但不同品种籽粒精米中2AP分布特征差异较大。Buttery等[63]发现巴斯马蒂香米、KDML105籽粒中约35% 的2AP分布于精米;应兴华等[64]研究发现桂香丝糯、清香米、泰国香稻1号R207等5个香稻品种精米中2AP含量占比在90% 以上。Yoshihashi等[65]推断精米中2AP与淀粉颗粒复合体紧密结合,但籽粒中2AP积累机制尚不明确,目前提出两种机制加以解释:一种认为叶片和鞘中合成的2AP被转运至籽粒,另一种认为2AP在籽粒中被从头合成。研究胚乳发育过程中2AP代谢通路变化特性,对于认识籽粒2AP积累机制、培育2AP高积累水稻至关重要。Hinge等[20]研究发现,随着籽粒成熟2AP含量不断提高,但籽粒中脯氨酸含量较低,P5CS基因表达水平下降,从而认为籽粒中2AP是由叶片转运而来,但该研究未考虑多胺代谢对2AP的影响;潘阳阳等[66]利用代谢组和转录组联合分析技术,对美香占2号乳熟期、蜡熟期和完熟期的籽粒2AP代谢通路进行分析,发现3个时期籽粒中均含有2AP生物合成所需的前体物质,同时,P5CSProDH以及多胺代谢途径中二胺氧化酶4(DAO4)、多胺氧化酶4(PAO4)、精胺合成酶和亚精胺合成酶等相关基因具有持续较高的表达水平,推测谷氨酸- 脯氨酸转化通路和多胺代谢途径均有助于2AP的积累。因此,从籽粒动态发育角度研究影响2AP积累的相关代谢物和相关基因具有较高可行性,将成为揭示2AP积累机制的重要手段。进一步加强胚乳中特异高表达的DAO4PAO4等基因对2AP含量影响的研究,对于特异提高精米中2AP含量具有重要意义。

3 展望

随着水稻功能基因组学的发展,香稻资源中Badh2基因单倍型得以深入挖掘,不同单倍型香稻材料之间2AP含量存在较大差异;2AP生物合成通路也被初步解析,但其中多数基因的生物学功能尚未研究,对2AP如何在籽粒中积累这一关键问题仍然缺乏系统认识。利用当前新兴的代谢组、转录组、蛋白质组等多层组学技术,综合研究香稻籽粒发育过程中2AP相关代谢物和基因的变化特性,尤其是重点关注多胺代谢途径的相关变化,挖掘关键调控基因,将有助于认识籽粒2AP积累机制。因此,未来香稻的研究可以聚焦以下两个方面:(1)解析不同香稻类型2AP代谢通路的差异,重点解析多胺代谢对2AP含量的影响机制;(2)加强不同类型Badh2单倍型香稻资源中DAO4PAO4等基因的利用,培育2AP高积累的香稻品种。

参考文献(References):
[1]
FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: the quest for quality[J]. Trends in Plants Science, 2009, 14(3): 133-139. DOI:10.1016/j.tplants.2008.12.004
[2]
WEI X, HANDOKO D D, PATHER L, METHVEN L, ELMORE J S. Evaluation of 2-acetyl-1-pyrroline in foods, with an emphasis on rice flavor[J]. Food Chemistry, 2017, 232: 531-544. DOI:10.1016/j.foodchem.2017.04.005
[3]
ELERT E. Rice by the numbers: a good grain[J]. Nature, 2014, 514: 50-51. DOI:10.1038/514S50a
[4]
胡培松, 唐绍清, 顾海华, 王晓焰. 水稻香味的遗传研究与育种利用[J]. 中国稻米, 2006(6): 1-5. DOI:10.3969/j.issn.1006-8082.2006.06.001
HU P S, TANG S Q, GU H H, WANG X Y. Genetic research of fragrance gene and its application in rice breeding[J]. China Rice, 2006(6): 1-5. DOI:10.3969/j.issn.1006-8082.2006.06.001
[5]
彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展[J]. 植物学报, 2017, 52(6): 797-807. DOI:10.11983/CBB16197.CBB16197
PENG B, SUN Y F, CHEN B Y, SUN R M, KONG D Y, PANG R H, LI X W, SONG X H, LI H L, LI J T, ZHOU Q Y, LIU L, DUAN B, SONG S Z. Research progress of fragrance gene and its application in rice breeding[J]. China Bulletin of Botany, 2017, 52(6): 797-807. DOI:10.11983/CBB16197.CBB16197
[6]
YAJIMA I, YANAI T, NAKAMURA M, SAKAKIBARA H, HABU T. Volatile flavor components of cooked rice[J]. Agricultural and Biological Chemistry, 1978, 42(6): 1229-1233. DOI:10.1080/00021369.1978.10863138
[7]
PETROV M, DANZART M, GIAMPAOLI P, FAURE J, RICHARD H. Rice aroma analysis: discrimination between a scented and a nonscented rice[J]. Sciences des Aliments, 1996, 16(4): 347-360. DOI:10.1016/0925-5214(95)00030-5
[8]
WIDJAJA R, CRASKE J D, WOOTTON M. Comparative studies on volatile components of non-aromatic and aromatic rices[J]. Journal of the Science of Food and Agriculture, 1996, 70: 151-161. DOI:10.1002/(SICI)1097-0010(199602)70:2<151:AID-JSFA478>3.0.C
[9]
CHAMPAGNE E T. Rice aroma and flavor: a literature review[J]. Cereal Chemistry, 2008, 85: 445-454. DOI:10.1094/CCHEM-85-4-0445
[10]
BUTTERY R G, LING L C, JULIANO B O, TURNBAUGH J G. Cooked rice aroma and 2-acetyl-1-pyrroline[J]. Journal of Agricultural and Food Chemistry, 1983, 31(4): 823-826. DOI:10.1021/jf00118a036
[11]
BERNER D K, HOFF B J. Inheritance of scent in American long grain rice[J]. Crop Science, 1986, 26: 876-878. DOI:10.2135/cropsci1986.0011183X002600050008x
[12]
PINSON S R M. Inheritance of aroma in six rice cultivars[J]. Crop Science, 1994, 34: 1151-1157. DOI:10.2135/cropsci1994.0011183X003400050002x
[13]
REDDY P R, SATHYANARAYANAIAH K. Inheritance of aroma in rice[J]. Indian Journal of Genetics and Plant Breeding, 1980, 40(2): 327-329. DOI:10.1016/0147-5975(80)90037-7
[14]
AHN S N, BOLLICH C N, TANKSLEY S D. RFLP tagging of a gene for aroma in rice[J]. Theoretical and Applied Genetics, 1992, 84: 825-828. DOI:10.1007/BF00227391
[15]
BRADBURY L M T, FITZGERALD T L, HENRY R J, JIN Q, WATERS D L E. The gene for fragrance in rice[J]. Plant Biotechnology Journal, 2005, 3: 363-370. DOI:10.1111/j.1467-7652.2005.00131.x
[16]
KOVACH M J, CALINGACION M N, FITZGERALD M A, MCCOUCH S R. The origin and evolution of fragrance in rice(Oryza sativa L.)[J]. Proceedings of the National Academy of Sciences, 2009, 106: 14444-14449. DOI:10.1073/pnas.0904077106
[17]
SHAO G N, TANG S Q, CHEN M L, WEI X J, HE J W, LUO J, JIAO G A, HU Y C, XIE L H, HU P S. Haplotype variation at Badh2, the gene determining fragrance in rice[J]. Genomics, 2013, 101: 157-162. DOI:10.1016/j.ygeno.2012.11.010
[18]
BRADBURY L M T, GILLIES S A, BRUSHETT D J, WATERS D L E, HENRY R J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice[J]. Plant Molecular Biology, 2008, 68: 439-449. DOI:10.1007/s11103-008-9381-x
[19]
CHEN S H, YANG Y, SHI W W, JI Q, HE F, ZHANG Z D, CHENG Z K, LIU X N, XU M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. The Plant Cell, 2008, 20: 1850-1861. DOI:10.1105/tpc.108.058917
[20]
HINGE V R, PATIL H B, NADAF A B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice(Oryza sativa L.)cultivars[J]. Rice, 2016, 938. DOI:10.1186/s12284-016-0113-6
[21]
WAKTE K, ZANAN R, HINGE V, KHANDAGALE K, NADAFA A, HENRY R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice(Oryza sativa L.): a status review[J]. Journal of the Science of Food and Agriculture, 2017, 97: 384-395. DOI:10.1002/jsfa.7875
[22]
XIE L H, TANG S Q, WEI X J, JIAO G A, SHENG Z H, HU P S. An optimized analysis of 2-acetyl-1-pyrroline content diversity in the core collection of aromatic rice germplasm(Oryza sativa L.)[J]. Cereal Chemistry, 2019, 96: 698-707. DOI:10.1002/cche.10166
[23]
PRODHAN Z H, SHU Q Y. Rice aroma: a natural gift comes with price and the way forward[J]. Rice Science, 2020, 27(2): 86-100. DOI:10.1016/j.rsci.2020.01.001
[24]
HASHEMI F S G, ISMAIL, M R, RAFⅡ M Y, ASLANI F, MIAH G, MUHARAM F M. Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants[J]. Biotechnology & Biotechnological Equipment, 2018, 32(4): 815-829. DOI:10.1080/13102818.2018.1478748
[25]
FITZGERALD T L, WATERS D L E, HENRY R J. The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl- 1-pyrroline concentration in aromatic and non-aromaticrice(Oryza sativa)[J]. Plant Science, 2008, 175: 539-546. DOI:10.1016/j.plantsci.2008.06.005
[26]
HE Q, YU J, KIM T S, CHO Y H, LEE Y S, PARK Y J. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice(Oryza sativa)[J]. PLOS ONE, 2015, 10(8): e0134801. DOI:10.1371/journal.pone.013480
[27]
BAICHAROEN A, VIJAYAN R, PONGPRAYOON P. Structural insights into betaine aldehyde dehydrogenase(BADH2)from Oryza sativa explored by modeling and simulations[J]. Scientific Reports, 2018, 8: 12892. DOI:10.1038/s41598-018-31204-z
[28]
NIU X L, TANG W, HUANG W Z, REN G J, WANG Q L, LUO D, XIAO Y Y, YANG S M, WANG F, LU B R, GAO F Y, LU T G, LIU Y S. RNAi-directed down regulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline)production in rice(Oryza sativa L.)[J]. BMC Plant Biology, 2008, 8: 100. DOI:10.1186/1471-2229-8-100
[29]
CHEN M L, WEI X J, SHAO G N, TANG S Q, LUO J, HU P S. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2[J]. Plant Breeding, 2012, 131: 584-590. DOI:10.1111/j.1439-0523.2012.01989.x
[30]
SHAN Q W, ZHANG Y, CHEN K L, ZHANG K, GAO C X. Creation of aromatic rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13: 791-800. DOI:10.1111/pbi.12312
[31]
邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用CRISPR/CAS9技术编辑水稻香味基因Badh2[J]. 中国水稻科学, 2017, 31(2): 216-222. DOI:10.16819/j.1001-7216.2017.6098
SHAO G N, XIE L H, JIAO G A, WEI X J, SHENG Z H, TANG S Q, HU P S. CRISPR/CAS9-mediated editing of the aromatic gene Badh2 in rice[J]. Chinese Journal of Rice Science, 2017, 31(2): 216-222. DOI:10.16819/j.1001-7216.2017.6098
[32]
祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2[J]. 中国农业科学, 2020, 53(8): 1501-1509. DOI:10.3864/j.issn.0578-1752.2020.08.001.j.issn.0578-1752.2020.08.001
QI Y B, ZHANG L X, WANG L Y, SONG J, WANG J J. CRISPR/ Cas9 targeted editing for the aromatic gene Badh2 in rice[J]. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509. DOI:10.3864/j.issn.0578-1752.2020.08.001.j.issn.0578-1752.2020.08.001
[33]
AMARAWATHI Y, SINGH R, SINGH A K, SINGH V P, MOHAPATRA T, SHARMA T R, SINGH N K. Mapping of quantitative trait loci for basmati quality traits in rice(Oryza sativa L.)[J]. Molecular Breeding, 2008, 21: 49-65. DOI:10.1007/s11032-007-9108-8
[34]
SHI W W, YANG Y, CHEN S H, XU M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of aromatic rice varieties[J]. Molecular Breeding, 2008, 22: 185-192. DOI:10.1007/s11032-008-9165-7
[35]
HE Q, PARK Y J. Discovery of a novel aromatic allele and development of functional markers for fragrance in rice[J]. Molecular Breeding, 2015, 35(11): 217. DOI:10.1007/s11032-015-0412-4
[36]
BOURGIS F, GUYOT R, GHERBI H, TAILLIEZ E, AMABILE I, SALSE J, LORIEUX M, DELSENY M, GHESQUIERE A. Characterization of the major fragrance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice[J]. Theoretical and Applied Genetics, 2008, 117: 353-368. DOI:10.1007/s00122-008-0780-9
[37]
SHI Y Q, ZHAO G C, XU X L, LI J Y. Discovery of a new fragranceallele and development of functional markers for identifying diverse aromatic genotypes in rice[J]. Molecular Breeding, 2014, 33: 701-708. DOI:10.1007/s11032-013-9986-x
[38]
BINDUSREE G, NATARAJAN P, KALVA S, MADASAMY P. Whole genome sequencing of Oryza sativa L. cv. Seeragasamba identifies a new fragrance allele in rice[J]. PLOS ONE, 2017, 12(11): e0188920. DOI:10.1371/journal.pone.0188920
[39]
KHANDAGALE K S, ZANAN R L, MATHURE S V, NADAF A B. Haplotype variation of Badh2 gene, unearthing of a new fragrance allele and marker development for non-basmati aromatic rice 'Velchi' (Oryza sativa L.)[J]. Agri Gene, 2017, 6: 40-46. DOI:10.1016/j.aggene.2017.09.003
[40]
WANG J F, XU X L, LUO Q, LI J Y. Mutation in the non-coding sequence of Badh2 gene reduces its transcription and translation in aromatic rice 'Nankai 138'[J]. Crop Science, 2016, 56: 1157-1162. DOI:10.2135/cropsci2014.03.0243
[41]
SCHIEBERLE P. Quantitation of important roast-smelling odorants in popcorn by stable isotope dilution assays and model studies on flavor formation during popping[J]. Journal of Agricultural and Food Chemistry, 1995, 43(9): 2442-2448. DOI:10.1021/jf00057a024
[42]
CHRISTOPHERSEN C, STRUVE C. Structural equilibrium and ringchain tautomerism of aqueous solutions of 4-aminobutyraldehyde[J]. Heterocycles, 2003, 60: 1907-1914. DOI:10.3987/COM-03-9802
[43]
POONLAPHDECHA J, GANTET P, MARAVAL I, SAUVAGE F-X, MENUT C, MORÈRE A, BOULANGER R, WÜST M, GUNATA Z. Biosynthesis of 2-acetyl-1-pyrroline in rice calli cultures: Demonstration of 1-pyrroline as a limiting substrate[J]. Food Chemistry, 2016, 197: 965-971. DOI:10.1016/j.foodchem.2015.11.060
[44]
HUANG T C, HUANG Y W, HUNG H J, HO C T, WU M L. Delta (1)-Pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp. natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13): 5097-5102. DOI:10.1021/jf0700576
[45]
HUANG T C, TENG C S, CHANG J L, CHUANG H S, HO C T, WU M L. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice(Oryza sativa L.)callus[J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7399-7404. DOI:10.1021/jf8011739
[46]
KAIKAVOOSI K, KAD T D, ZANAN R L, NADAF A B. 2-Acetyl- 1-pyrroline augmentation in scented indica rice(Oryza sativa L.) varieties through Δ1-pyrroline-5-carboxylate synthetase(P5CS)gene transformation[J]. Applied Biochemistry and Biotechnology, 2015, 177(7): 1466-1479. DOI:10.1007/s12010-015-1827-4
[47]
MO Z W, LI W, PAN S G, FITZGERALD T L, XIAO F, TANG Y J, WANG Y L, DUAN M Y, TIAN H, TANG X R. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in aromatic rice[J]. Rice, 2015, 8: 9. DOI:10.1186/s12284-015-0040-y
[48]
BAO G G, ASHRAFA U, WANG C L, HE L X, WEI X S, ZHENG A X, MO Z W, TANG X R. Molecular basis for increased 2-acetyl- 1-pyrroline contents under alternate wetting and drying(AWD) conditions in aromatic rice[J]. Plant Physiology and Biochemistry, 2018, 133: 149-157. DOI:10.1016/j.plaphy.2018.10.032
[49]
MO Z W, LI Y H, NIE J, HE L X, PAN S G, DUAN M Y, TIANH, XIAO L Z, ZHONG K Y, TANG X R. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl- 1-pyrroline(2AP)formation in aromatic rice[J]. Rice, 2019, 12: 74. DOI:10.1186/s12284-019-0335-5
[50]
LUO H W, DU B, HE L X, HE J, HU L, PAN S G, TANG X R. Exogenous application of zinc(Zn)at the heading stage regulates 2-acetyl-1-pyrroline(2-AP)biosynthesis in different aromatic rice genotypes[J]. Scientific Reports, 2019, 9: 19513. DOI:10.1038/s41598-019-56159-7
[51]
LUO H W, DU B, HE L X, ZHENG A X, PAN S G, TANG X R. Foliar application of sodium selenate induces regulation in yield formation, grain quality characters and 2-acetyl-1-pyrroline biosynthesis in aromatic rice[J]. BMC Plant Biology, 2019, 19: 502. DOI:10.1186/s12870-019-2104-4
[52]
KAKKAR R K, SAWHNEY V K. Polyamine research in plants - a changing perspective[J]. Physiologia Plantarum, 2002, 116: 281-292. DOI:10.1034/j.1399-3054.2002.1160302.x
[53]
张灵, 陶亚军, 方琳, 范方军, 李文奇, 王芳权, 许扬, 陈智慧, 蒋彦婕, 杨杰, 王军. 植物多胺的代谢与生理研究进展[J]. 植物生理学报, 2020, 56(10): 2029-2039. DOI:10.13592/j.cnki.ppj.2019.0550
ZHANG L, TAO Y J, FANG L, FAN F J, LI W Q, WANG F Q, XU Y, CHEN Z H, JIANG Y J, YANG J, WANG J. Metabolism and physiological function of polyamine in plants[J]. Plant Physiology Journal, 2020, 56(10): 2029-2039. DOI:10.13592/j.cnki.ppj.2019.0550
[54]
杨建昌, 张亚洁, 张建华, 王志琴, 朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069-1075. DOI:10.3321/j.issn:0496-3490.2004.11.001.j.issn:0496-3490.2004.11.001
YANG J C, ZHANG Y J, ZHANG J H, WANG Z Q, ZHU Q S. Changes in contents of polyamines in the flag leaf and their relationship with drought-resistance of rice cultivars under water deficit stress[J]. Acta Agronomica Sinica, 2004, 30(11): 1069-1075. DOI:10.3321/j.issn:0496-3490.2004.11.001.j.issn:0496-3490.2004.11.001
[55]
刘霞. 外源茉莉酸甲酯和亚精胺对水稻高温胁迫的缓解效应[D]. 南京: 南京农业大学, 2016: 57-66.
LIU X. Alleviation effects of exogenous methyl jasmonate and spermidine on rice under heat stress[D]. Nanjing: Najing Agricultural University, 2016: 57-66.
[56]
欧阳家俊, 宋春竹, 陈东红, 黄勇, 阮颖. 植物多胺抗热机制及多胺转运蛋白的研究进展[J]. 分子植物育种, 2017, 15(8): 3286-3294. DOI:10.13271/j.mpb.015.003286
OUYANG J J, SONG C Z, CHEN D H, HUANG Y, RUAN Y. Research progress on heat-tolerance mechanism and transports of polyamines in plant[J]. Molecular Plant Breeding, 2017, 15(8): 3286-3294. DOI:10.13271/j.mpb.015.003286
[57]
MASSON P H, TAKAHASHI T, ANGELINI R. Editorial: molecular mechanisms underlying polyamine functions in plants[J]. Frontiers in Plant Science, 2017, 8: 14. DOI:10.3389/fpls.2017.00014
[58]
王志琴, 张耗, 王学明, 张自常, 杨建昌. 水稻籽粒多胺浓度与米质的关系[J]. 作物学报, 2007, 33(12): 1922-1927. DOI:10.3321/j.issn:0496-3490.2004.11.001
WANG Z Q, ZHANG H, WANG X M, ZHANG Z C, YANG J C. Relationship between concentrations of polyamines in filling grains and rice quality[J]. Acta Agronomica Sinica, 2007, 33(12): 1922-1927. DOI:10.3321/j.issn:0496-3490.2004.11.001
[59]
王静超. 多胺与乙烯对水稻籽粒灌浆的调控作用[D]. 扬州: 扬州大学, 2013: 26-30.
WANG J C. Regulation of polyamines and ethylene to the grain filling of rice[D]. Yangzhou: Yangzhou University, 2013: 26-30.
[60]
付玉营. 亚精胺调控杂交水稻种子质量与耐热性的机理研究[D]. 杭州: 浙江大学, 2019: 25-35.
FU Y Y. Study on the mechanism of spermidine in modulating seed quality and heat tolerance of hybrid rice[D]. Hangzhou: Zhejiang University, 2019: 25-35.
[61]
FAIT A, FROMM H, WALTHER D, GALILI G, FERNIE A R. Highway or byway: the metabolic role of the GABA shunt in plants[J]. Trends in Plant Science, 2008, 13(1): 14-19. DOI:10.1016/j.tplants.2007.10.005
[62]
苏国兴, 刘友良. 高等植物体内的多胺分解代谢及其主要产物的生理作用[J]. 植物学通报, 2005, 22(4): 408-418.
SU G X, LIU Y L. Function of polyamine catabolism and its main catabolic products in higher plants[J]. Chinese Bulletin of Botany, 2005, 22(4): 408-418.
[63]
BUTTERY R G, LING L C, MON T R. Quantitative-analysis of 2-acetyl-1-pyrroline in rice[J]. Journal of Agricultural and Food Chemistry, 1986, 34(1): 112-114. DOI:10.1021/jf00067a031
[64]
应兴华, 徐霞, 欧阳由男, 朱智伟, 施建华. 香稻品种2-乙酰-1-吡咯啉多样性及籽粒分布特征的研究[J]. 核农学报, 2011, 25(1): 71-74. DOI:10.11869/hnxb.2011.01.0071.hnxb.2011.01.0071
YING X H, XU X, OUYANG Y N, ZHU Z W, SHI J H. Diversity of 2-acetyl-1-pyrroline content in aromatic rice(Oryza sativa L.) varieties and distributed characteristic in seeds[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(1): 71-74. DOI:10.11869/hnxb.2011.01.0071.hnxb.2011.01.0071
[65]
YOSHIHASHI T, HUONG N T T, SUROJANAMETAKUL V, TUNGTRAKUL P, VARANYANOND W. Effect of storage conditions on 2-acetyl-1-pyrroline content in aromatic rice variety, Khao Dawk Mali 105[J]. Journal of Food Science, 2005, 70(1): S34-S37. DOI:10.1111/j.1365-2621.2005.tb09061.x
[66]
潘阳阳, 陈宜波, 王重荣, 李宏, 黄道强, 周德贵, 王志东, 赵雷, 龚蓉, 周少川. γ- 氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2): 121-129. DOI:10.16819/j.1001-7216.2021.0805
PAN Y Y, CHEN Y B, WANG C R, LI H, HUANG D Q, ZHOU D G, WANG Z D, ZHAO L, GONG R, ZHOU S C. Metabolism of γ-aminobutyrate and 2-acetyl-1-pyrroline analyses at various grain developmental stages in rice(Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2021, 35(2): 121-129. DOI:10.16819/j.1001-7216.2021.0805
(责任编辑  崔建勋)