文章信息
基金项目
- 广东省重点领域研发计划项目(2018B020206002,2020B0202090003);广东省自然科学基金(2021A1515010820);广州市科技计划项目(202102080417);广东省科技计划项目(2020B1212060047)
作者简介
- 王晓飞(1982—),男,硕士,助理研究员,研究方向为水稻遗传育种及抗倒伏研究,E-mail:wangxiaofei@gdaas.cn.
通讯作者
- 何秀英(1974—),女,博士,研究员,研究方向为水稻遗传育种,E-mail:hexiuying@gdaas.cn.
文章历史
- 收稿日期:2021-09-02
水稻是全世界最重要的粮食作物之一,也是我国栽培面积最大、总产量最高的粮食作物。水稻生产状况直接关系到我国粮食安全问题。长期以来,虽然水稻生产水平有了很大提高,但是水稻的倒伏问题始终制约着水稻的高产和优质化发展。水稻一旦发生大面积倒伏,将会引起产量的严重损失及稻米品质的大幅下降,同时大幅增加收割成本。全球作物倒伏每年造成约数十亿美元的损失。水稻的倒伏现象是一个内外因共同作用的结果,除了受外界环境影响,还受到品种自身特性及栽培管理水平的影响。以矮化育种为目标的“绿色革命”使矮秆基因广泛应用于水稻抗倒伏品种的选育,曾为解决水稻倒伏问题发挥了关键作用。然而,60多年过去了,传统的矮秆品种由于自身生物量积累较少,产量的进一步提高受到很大限制。20世纪90年代提出的水稻超高产育种、超级稻等概念,都将目光聚焦在株型改良上。在保持高收获指数的前提下,大幅度提高水稻生物量进而大幅度提高经济产量是超高产育种的关键。但是,水稻的倒伏压力也显著增加。当前,随着国内水稻种植综合成本特别是劳动力成本的迅速攀升,使得种植收益大幅降低。为了降低生产成本,水稻生产向机械化、轻简化(如直播)、规模化发展的趋势也对水稻品种的抗倒伏性提出了更高要求。因此,提高水稻的抗倒伏能力已经成为目前水稻生产中亟待解决的关键技术问题之一。
随着分子生物学的发展,水稻抗倒伏研究已从表型分析逐渐深入到抗倒伏性状QTL定位及相应分子机理的阐明,结合最新的基因编辑技术,可以更加有效地在分子层面对水稻抗倒伏性进行研究。通过培育抗倒伏品种,因地制宜并结合科学合理的栽培管理方法,是解决水稻抗倒伏问题的关键。通过研究水稻抗倒伏的关键基因,进而利用分子育种及基因编辑等技术培育优良抗倒伏品种,是解决水稻倒伏问题最根本、最有效的途径之一。因此,在当前形势下,开展水稻的抗倒伏基因研究具有十分重要的现实意义。作者综述了近年来关于水稻抗倒伏的研究进展,并对研究领域未来发展情况进行了展望,为水稻抗倒伏育种、栽培技术、抗倒伏分子机制等理论研究以及实际应用提供参考。
1 水稻倒伏问题的由来20世纪50年代之前,国内广泛种植高秆大穗型品种, 在多肥条件下容易发生倒伏。倒伏问题成为当时水稻高产、稳产的一大限制因素[1]。1959年,广东省农业科学院就已经开展水稻矮化育种工作,黄耀祥等利用矮仔占作为矮源,与高秆品种广场13杂交,育成了我国第一个矮秆、高产、稳产、抗倒伏的籼稻品种“广场矮”,比国际水稻研究所育成的IR8早了7年,在世界水稻育种史上是一次重大突破。到60年代末已经培育出一大批高产抗倒伏矮化品种,覆盖广东省2/3以上的水稻种植面积,水稻单产提高近1倍。矮化育种基本解决了当时水稻高产、耐肥及抗倒伏的问题,成为“绿色革命”的重要组成部分。之后20多年,我国科学家相继育成了珍珠矮、桂朝2号、黄华占和新桂早等多个优良矮秆品种,为我国粮食的高产稳产做出了突出贡献[2]。
20世纪90年代之后,水稻超高产(超级稻)育种被提上议事日程。为了在原有基础上大幅度提高经济产量, 超级稻育种必然会涉及到生物量的大幅提高,也必然是以提高株高为主要途径。这样一来就会导致水稻基部茎秆所承受的倒伏压力也大幅增大。同时,为了获得高产,施肥量也将大幅度增加。以上这些因素叠加将大幅度提高水稻倒伏风险。因此,水稻超高产育种的前提之一就是进一步提高水稻的抗倒伏性[3]。
2 水稻倒伏的分类及影响 2.1 水稻倒伏的分类及评价方法从生理角度来看,倒伏是由于水稻抽穗后重心逐渐转移至穗部,一方面,茎秆基部所受力矩随穗重和秆长的增加而增大;另一方面,由于生长中心向穗部转移,下部茎秆的生长趋势减弱,支持上部重量的能力下降,在承受重量增加和承载能力减弱的双重作用下发生倒伏。从力学的角度来看,水稻是否发生倒伏取决于外界风雨等作用下的致倒力与茎秆的弹性和韧性以及根部附着力等抗倒力之间的强弱关系。当致倒力超过茎秆抗倒力或根部附着力的上限时便发生倒伏,株高过高使植株的重心增高,受力的力臂增大,外力力矩增大,抗倒力矩减少,抗倒力减弱,当外力力矩大于植株的抗倒力矩时,即发生倒伏[4]。倒伏可以分为根倒伏和茎倒伏两大类,目前生产上以茎倒伏为主,一般发生在抽穗后,可以分为弯曲型、挫折型、扭转型,其中以挫折型危害最大。
确定水稻倒伏的相关性状,建立客观、科学的评价方法是开展水稻抗倒伏研究的前提和基础[5]。倒伏评价方法经过几十年的发展,目前使用较为广泛的有力学判定法、模型指标法和智能遥感法。力学判定法中以节间抗折力测定和倒伏指数法较为常用,蒋明金等提出了折断型、弯曲型和根倒型3种水稻倒伏力学判定方法[6]。模型指标法也逐渐受到重视。Li等提出了一种简便、低成本的衡量水稻倒伏特性的指标——相对茎壁厚度(RCWT),试验证明可作为评价水稻抗倒伏能力的重要指标[7]。Liang等确定了茎秆的抗弯强度等7个指标,利用模糊综合评判方法建立了类茎秆作物的模糊综合评判模型[8]。袁志华等建立了水稻茎秆的力学模型[9],Stubbs等给出了分析植株自身重量与茎秆抗倒伏能力之间的关系的公式[10]。Gui等利用径向基函数(RBF)神经网络分析方法,建立水稻形态特征和抗倒伏能力的数学模型[11]。此外,随着计算机网络技术、人工智能的发展,近几年智能遥感法开始引起研究者的兴趣。遥感技术能够快速捕捉信息,在农业上的应用越来越广泛,例如应用无人机技术监控作物抗倒伏状况,取得不错的效果[12]。目前,实际应用中以茎秆力学评价法使用较为广泛,效果较好。
2.2 倒伏对水稻产业的影响水稻通常会发生茎倒伏和根倒伏,这两种类型的倒伏都可以单独或同时发生,但它们都从整体上影响植株的正常生长和产量[13]。水稻一旦发生倒伏,将造成不同程度的减产及品质下降,直接威胁水稻的高产、稳产、优质。倒伏因阻碍了水分及营养物质、同化物等经木质部和韧皮部的运输,从而降低了灌浆的效率,会导致结实率及千粒重大幅度下降,造成大幅度减产。一般来说,倒伏的水稻会减产10%~40%,严重者甚至超过50%,同时会大幅度提高收割成本。水稻倒伏后茎叶相互遮挡非常严重,通风、透光性大幅下降,如遇阴雨天或田间湿度较大时,容易穗上发芽、腐烂变质,导致稻米品质大幅度下降。同时,水稻倒伏后容易伴随病虫害的发生,也更易遭受鸟、鼠害,加重损失[14-15]。
3 水稻抗倒伏性相关影响因素研究进展 3.1 水稻抗倒伏性相关品种特性因素3.1.1 水稻抗倒伏性相关表型 相关研究表明,水稻株型、茎秆物理特性、茎秆化学成分是影响倒伏的主要因素[16-17],外界环境及栽培技术也有一定影响。在众多影响因素中,水稻基部茎秆性状与抗倒伏性关系最为密切[18]。水稻抗倒伏性的强弱主要取决于茎秆的物理特性、解剖结构和化学组成[4]。
茎秆物理特性与水稻抗倒伏性密切相关。茎秆是水稻最重要的支撑结构,水稻倒伏大多发生在茎秆基部的几个伸长节间上,距茎基部40 cm内的茎秆特别是N2(基部第二伸长)节间与水稻抗倒伏性密切相关。基部各伸长节间长度、充实程度(鲜重)、粗度、秆壁厚度、叶鞘包茎度、生物产量等与倒伏密切相关。基部各伸长节间短,秆壁厚,茎秆直径大,充实程度高,叶鞘包茎度大有利于增强茎秆的抗折力和抗倒伏性[4, 19]。茎秆机械强度越大,充实度越高,茎秆越粗,品种倒伏指数越小,越抗倒伏[20]。
提高节间抗折力是提高水稻茎秆抗倒伏能力的主要目标之一。研究表明,增加节间单位长度干物质量,并增加节间壁厚度,可显著提高水稻节间抗折力[17, 21-22]。研究表明茎鲜重和茎秆充实度与抗折力也具有较高的相关性[23],茎秆解剖结构及机械强度是植株抗倒伏性的重要影响因素[24-25]。基部茎秆的维管束数量、厚壁组织细胞层数及其木质化程度、皮层纤维组织的厚度等与抗倒伏性密切相关。茎秆维管束数量越多、直径越大、厚壁组织细胞层数越多、木质化程度越高且皮层纤维组织越厚越能显著增强水稻茎秆的抗倒伏性[26-30]。
此外,茎秆化学组成与抗倒伏性的关系密切。大量研究表明,水稻茎秆基部节间贮存的可溶性糖含量与茎秆细胞充实度及抗倒伏性密切相关。纤维素和半纤维素能显著增强茎秆的机械强度和抗倒伏性[31]。钾和硅对促进茎秆的生长发育,茎秆细胞壁硅质化,提高茎秆的健壮程度,增强茎秆的抗倒伏性有着重要的作用。水稻植株中SiO2含量高达20%[32],基部茎秆壁厚度及抗折力与茎秆SiO2的含量显著相关[33]。施加硅肥后,水稻茎秆粗壮、机械强度增大[34-35]。株高也是水稻抗倒伏性的重要影响因子之一。株高与倒伏指数显著或极显著正相关,茎秆的抗折力与株高的平方成反比,株高过高使植株的重心增高容易发生倒伏[17]。根、叶片、叶鞘、分蘖角、穗型等也是抗倒伏性的影响因子[22-23, 36-38]。
3.1.2 水稻抗倒伏性相关基因 水稻SD1突变体的鉴定产生了一种半矮秆表型,育种家利用这种表型来提高产量与抗倒伏性。正是由于对SD1突变体的研究引发了水稻的绿色革命。SD1等位基因降低了株高,提高了大量施用氮肥情况下的抗倒伏能力。广场矮携带的SD1是我国首个利用该半矮秆性状的高产水稻品种,能显著提高水稻产量。被称为奇迹水稻的IR8也是用SD1培育出来的[39]。基因组测序结果表明,作为水稻半矮秆表型供体的几个品种具有不同的SD1等位基因[40]。SD1对水稻分蘖数、每穗粒数和株高均有多效性影响, 弱等位基因SD1-EQ使杂交稻品系增产及增加株高[41]。
除了SD1基因以外,研究者陆续发现了其他一些抗倒伏相关基因。籼稻品种R498的gn1a等位基因(gn1a R498)通过增加茎秆直径和促进冠根发育来提高水稻的抗倒伏能力[42]。OsPSLSq6基因与肉桂酰辅酶a还原酶相似,参与木质素生物合成的防御反应. 为控制木质素合成提高抗倒伏能力开辟了新途径[43]。OsmiR166b-OsHox32基因可通过调控细胞壁相关基因的表达而间接影响植物的抗倒伏性[44]。OsEXTL转基因植株的次生细胞壁显著增厚,纤维素水平显著提高,植株的机械强度及抗倒伏能力提高[45]。有研究发现多个茎秆直径相关QTL的组合可能会提高水稻茎秆强度及抗倒伏能力[23, 46]。SMOS1基因突变可导致秆壁厚度与茎秆直径明显增加,导致茎秆抗折力增大,已被用于厚壁、粗秆抗倒伏水稻品种的培育[47-48]。BC6、BC7/BC11、BC3、BC15/ OSCTL1、BC14/OsNST1、BC10等多个基因与茎秆化学物质相关。SD1、PROG1、TAC1、LA1、OSTBC/FC1/SCM3、DEP1、LP/EP3、OSAPO1/ SCM2、IPA1/WFP/OsPL14、SDT等基因与水稻株型及抗倒伏性相关[49]。Zhao等筛选到一个候选基因OsCYPq1,可能参与赤霉素(GA)的合成,影响茎粗[50]。Wang等发现候选基因LOC_ Os10g20160(SD-RLK-45),可能是调控水稻旗叶宽度的主基因[51]。
3.1.3 水稻抗倒伏性相关分子机制及遗传研究 SD1基因的抗倒伏的遗传作用机制研究是一个长期的热点。SD1基因编码水稻赤霉素20氧化酶-2(GA20ox2),有助于揭示赤霉素生物合成的分子机制。SD1基因还参与了其他重要农艺性状的分子调控,如氮肥利用。SD1的新等位基因可以通过诱变和基因组编辑得到。这些新等位基因将对提高半矮秆育种资源多样性发挥重要作用[52]。SD1基因变异导致赤霉素合成受阻,细胞伸长受到抑制。该基因主要在茎秆中表达,含有SD1基因的矮秆品种只降低株高,产量不受影响[53-54]。目前,利用SD1等位变异基因,生产上培育了大量的抗倒伏矮秆水稻品种[55-56]。Santoso等利用CRISPR/Cas9系统对OsGA20ox-2基因进行靶向诱变,获得了半矮化表型[57]。
除了SD1基因外,研究者对水稻抗倒伏相关遗传开展了广泛研究。Long等鉴定出主效QTL qr1可以增加茎秆的直径、长度和断裂强度,主效QTL qr8显著增强了茎秆断裂强度[58]。Jiang等在Chr.2上检测到1个稳定的断面模量(SM)和长轴外径(ODMA)QTL,与水稻抗断型倒伏的主要因素——断裂弯矩正相关[59]。Sowadan等鉴定出14个抗倒伏性相关的新数量性状位点和10个有利等位基因[60]。Guo等研究发现127个抗倒伏相关位点[61]。Zhang等新发现株高QTL qPH8具有与SD1相当的加性效应,qPH8主要控制基部节间伸长。qPH8的C7等位基因可降低株高且产量不变,提高了水稻的抗倒伏能力[62]。Yang等研究发现YqPH-6等位基因对水稻株高有正向调控作用,可使水稻产量提高18.50%[63]。Li等研究发现水稻突变体FC17中,纤维素合酶4(CESA4)蛋白P-CR位点突变影响了细胞壁特性,尤其是纤维素结构,提高了生物质的糖化作用和抗倒伏能力[64]。Meng等通过关联分析,确定了影响茎强度的相关性状(节间长度、茎壁厚度、茎外径、茎内径)。新发现了17个抗倒伏相关候选基因[65]。陈桂华等研究了水稻茎秆形态、化学成分含量、茎秆解剖结构与抗倒伏能力的关系及相关性状的配合力方差和亲本的一般配合力。研究认为,单茎抗推力的遗传由加性基因和非加性基因共同控制, 不育系的基因加性效应对杂交组合的抗倒能力影响较大[66]。
对于茎秆抗倒伏性的遗传率,不同研究者因所用材料和分析方法的不同,结果差异较大。孙旭初研究结果显示,茎基抗折力、抗倒指数和茎长等性状的遗传率均在81.9% 以上[67]。梁康迳等用双列杂交方差分析估算茎粗和秆型指数的狭义遗传率分别为79.9% 和64.8%。秆长、茎粗、茎基抗折力、秆型指数和抗倒指数等5个茎秆抗倒伏性状的普通狭义遗传率相对较低,普通狭义遗传率最高的茎粗也仅40.6%[68-69]。Keerthiraj等研究倒伏率的遗传率最高达到84.83%[70]。
邹德堂等的研究结果表明,倒伏指数的遗传以加性效应为主;倒伏指数的一般配合力在早期世代间较稳定,特殊配合力变化较大;水稻倒伏指数的一般配合力效应值与亲本倒伏指数呈正相关,双亲倒伏指数的平均值对后代倒伏指数的影响大于亲本之一的影响,从而提出在抗倒伏育种中最好采用倒伏指数低×低的组配方式[71]。抗倒伏性是作物的遗传性与一定的环境条件相互作用的结果。基因型与环境互作效应影响茎秆抗倒伏性的基因型值、群体平均优势(HMP)和群体超亲优势(HBP)[72]。因此,研究茎秆抗倒伏性的遗传应采用包括上位性和环境互作的遗传模型,使得出的遗传参数更具有实际参考价值和指导意义。
3.2 水稻抗倒伏性的外部影响因素栽培技术与外界环境对水稻抗倒伏性也有较大影响。科学合理的栽培技术能够增强水稻的抗倒伏性。研究表明,旱作直播(DDS)的水稻基部节间短,茎粗和茎壁厚,倒伏指数低,提高了茎秆抗倒伏能力[73-74]。Liu等研究表明,机插法抗倒伏能力较强,湿直播法抗倒伏能力较差[75]。Huang等研究表明,促进水稻抽穗前生长可以提高水稻抗倒伏能力,同时保持高产[76]。王振昌等研究认为长期保持水层过深、晒田不充分,容易引起倒伏[77]。许俊伟研究表明茎秆基部节间的倒伏指数与栽插密度呈极显著正相关,栽插密度越大越容易倒伏[78]。
施肥状况显著影响水稻的抗倒伏性。施用氮肥的作用是促进植株茎秆、叶片的快速生长,快速增加生物量。研究表明,施氮水平的提高或氮素穗肥比例的增加均会增加水稻倒伏的风险[79]。科学的氮肥管理可以通过缩短基部节间长度来提高水稻抗的抗倒伏性[80-81]。钾肥、硅肥能够增强茎秆的机械强度,磷肥则对根系发育有促进作用,同时促进灌浆结实[82-85]。合理的硅钾肥配比能显著增加易倒伏水稻品种的茎秆壁厚和直径,缩短基部节间长度,提高抗折力,增强植株抗倒伏能力[86]。
此外,日常管理中病、虫、草害的防治以及天气影响也很重要。稻瘟病、稻热病、纹枯病、粒菌核病和白叶枯病严重的会导致水稻倒伏。稻飞虱危害严重的地方,常发生倒伏。杂草控制不好导致水稻生长不良,容易发生倒伏[87]。在抽穗灌浆时期,水稻如遇到暴风骤雨等恶劣天气条件易发生倒伏[88-90]。
4 水稻抗倒伏对策研究进展 4.1 选育抗倒伏品种培育抗倒伏优良品种是提高水稻抗倒伏性最根本、最有效的办法之一。研究者普遍认为应利用现代生物技术结合传统育种方法,培育综合性状优良,特别是具有耐肥、植株矮、茎秆坚韧、基部节间短且茎秆壁厚、叶片直立、剑叶中等、根系发达等性状的品种。这些品种的茎秆机械强度高,根系附着力强,抗倒伏性强[91-92]。
利用CRISPR/cas基因编辑系统、GWAS等现代生物技术进行水稻抗倒伏品种选育是一个高效的方法[93]。Apriana等利用CRISPR/Cas9基因组编辑技术和传统育种相结合的方法开发GA20ox-2基因突变体水稻,可以在植物育种计划中促进快速和精确的作物改良[94]。Nomura研究采用包括日本水稻地方品种在内的水稻群体组进行全基因组关联分析(GWAS),利用研究发现的强壮茎秆关联位点可以提高半矮化品种的抗倒伏能力[95]。培育高收获指数超级稻杂交种是实现水稻高产和抗倒伏能力的可能途径[96]。Zhang等研究表明,基部第二节间部分性状与水稻倒伏密切相关,可作为水稻抗倒伏育种的有效指标[97]。紧凑型水稻品种在机插条件下具有较高的抗倒伏性和抗氮性[98]。
4.2 应用抗倒伏栽培技术除了基因和遗传控制,环境和栽培方式也对倒伏有极其重要影响[99]。机械精量穴直播是一种新型的种植模式,在我国南方地区具有高产、抗倒伏等优点,研究表明垄作施肥有利于提高直播早籼稻籽粒产量和抗倒伏能力[100]。Zhao等研究表明,在相同的化肥施用量下,秸秆还田处理能显著提高秸秆抗弯性,降低水稻倒伏的风险[101]。垄作可以提高机械湿直播水稻抗倒伏能力,若采用旱直播(DDS)种植方式不可明显提高植株抗倒伏能力并增加产量[102-103]。同时,要加强田间的日常管理,精耕细作,科学灌溉、合理施肥,对提高抗倒伏能力,有明显作用[104-106]。
此外,研究发现合理使用多效唑、缩节胺、烯效唑、抗倒酯、抗倒胺等生长调节剂、延缓剂可以有效提高水稻的抗倒伏性[107-109]。研究表明,叶面施用烯效唑能提高杂交籼稻的抗倒伏能力,使基部茎秆强度和碳水化合物积累量增加[110]。施用多效唑有利于水稻产量提高和控制后期倒伏[111]。水稻始穗期喷施乙烯利和劲丰能显著影响植株茎秆的形态特征、解剖结构及抗倒伏指标,降低茎秆倒伏指数,提高植株的抗倒伏能力[112]。抗倒酯和氮肥混合施用以降低旱稻株高提高抗倒伏性的同时提高产量[113]。在气候变化条件下,CO2水平的提高可以提高水稻的抗倒伏能力[114]。
4.3 监控及评估倒伏情况作物倒伏情况需要及时监测并进行准确评估,以及时获取发生倒伏的位置和面积等有价值的信息。随着无人机及人工智能、大数据的高速发展,倒伏的监控与评估已经逐渐从以往相对滞后的人工调查阶段发展到了实时监控的智能化、自动化阶段。
基于无人机可见光图像的框架具有较好的农作物倒伏识别能力,在精准农业中具有较大的应用潜力[115]。Liu等利用无人机可见光和红外热成像指数估算水稻倒伏程度,显著提高了水稻倒伏的识别精度[116]。Yang等利用深度神经网络和真实无人机能量剖面,对水稻高倒伏地区进行多层次的无人机侦察,大大提高了水稻抗倒伏的监测水平[117]。Wilke等利用运动结构(SFM)技术评估无人机图像的潜力,以量化大麦倒伏百分比和倒伏严重程度,此方法可以改进后引入水稻倒伏情况的评估[118]。此外,Wu等利用高通量微CT - RGB成像系统和深度学习(SegNet)技术,开发了高通量micro-CT图像分析管道,可提取24个水稻茎秆形态性状和抗倒伏相关性状,以精确量化水稻茎秆的表型性状,有助于未来高通量筛选水稻群体的抗倒伏能力[119]。Oduntan等建立了一种新的利用立体镜和半自动图像处理算法表型分析方法,该方法速度快、成本低,可用于生成植物茎秆的特定样本、尺寸精确的计算模型(包括有限元模型),用来评价水稻茎秆的抗倒伏能力[120]。Shrestha等研究一种在小区尺度上诱导水稻倒伏以研究抗倒伏性的方法,它利用风力涡轮机在田间创建宽1 m、深6 m的风路,可以较好地模拟自然倒伏的情形[121]。除了以上方法以外,目前还有基于卫星光谱数据的遥感倒伏监测、基于雷达数据的遥感倒伏监测等方法[122]。新技术的发展与应用极大地提高了水稻抗倒伏评估的效率,将更好地解决水稻的倒伏问题。
5 展望水稻抗倒伏研究是一项长期而艰巨的任务。“绿色革命”以来倒伏始终制约着水稻的高产、稳产及优质化发展。随着机械化、轻简化、直播、免耕等栽培方式的快速普及,解决水稻倒伏问题已经刻不容缓。水稻抗倒伏研究将长期与水稻育种及栽培研究协同发展。
水稻抗倒伏研究将从以茎秆为中心的茎倒伏研究逐步演变为以根系与茎秆研究并重的局面。我国长期依赖移栽插秧等传统播种方式,秧苗根部相对入土较深,不容易发生根倒伏,倒伏类型主要为茎倒伏。长期以来茎倒伏都是水稻抗倒伏研究的重点和热点。然而随着机械化程度的不断提高,直播、抛秧、免耕等轻简化栽培方式的快速普及,水稻根部都是在土壤浅层附着,根部抓地力下降,遇到风雨等外力作用发生根倒伏的可能性比以往大幅度增加。因此,根倒伏研究将会成为水稻抗倒伏研究新的热点和重点。
抗倒伏研究将从表型研究逐步深入到基因层面,从单纯的基因定位及功能研究进化到分子机制研究。目前,学术界对水稻倒伏相关影响因素的研究已经比较充分。科研人员研发了抗倒伏栽培技术、施肥技术、抗倒伏药剂(如缩节胺、矮壮素等),对提高水稻抗倒伏性有良好效果。但是,要用经济、有效的办法从根本上解决水稻的倒伏问题,还得从选育优良的抗倒伏品种入手。然而,经过大量研究发现,水稻抗倒伏性是一个由多基因控制的复杂数量性状。目前对水稻抗倒伏的相关基因定位及功能研究仍然没有突破性进展,对水稻抗倒伏分子机制也没有彻底搞清楚。因此,加快水稻抗倒伏性相关基因的发掘,对水稻抗倒伏性的分子遗传机制进一步深入研究,在此基础上选育抗倒伏性强的优良品种是防止水稻倒伏的最有效措施。随着近年分子标记技术、基因编辑技术以及生物信息学技术飞速发展与应用,水稻抗倒伏研究已经全面深入到了分子水平。水稻倒伏问题将会伴随着生物技术以及配套栽培管理技术的不断进步迎刃而解。
随着计算机技术、人工智能、大数据、无人机等技术领域的高速发展,水稻抗倒伏研究及倒伏的监控与评估已经跨越了以往滞后、低效的以人工调查为主的阶段,目前已经逐步进入到实时监控及预测为主的高度智能化、自动化的阶段,水稻抗倒伏研究将迎来一个飞跃式发展。
[1] |
齐龙昌, 周桂香. 水稻抗倒伏性状影响因素研究进展[J]. 安徽农业科学, 2019, 47(9): 19-22,25. DOI:10.3969/j.issn.0517-6611.2019.09.006 QI C L, ZHOU G X. Advances in rsearch on fctors influencing lodging resistance in rice[J]. Journal of Anhui Agricultural Sciences, 2019, 47(9): 19-22,25. DOI:10.3969/j.issn.0517-6611.2019.09.006 |
[2] |
刘学英. 矮化育种, 中国不曾缺席[J]. 生命世界, 2021(2): 16-17. LIU X Y. Dwarfing breeding, China has not been absent[J]. Life World, 2021(2): 16-17. |
[3] |
滕祥勇, 王金明, 李鹏志, 林秀云, 孙强. 水稻抗倒伏性的影响因素及评价方法研究进展[J]. 福建农业学报, 2021, 36(10): 1245-1254. DOI:10.19303/j.issn.1008-0384.2021.10.018. TENG X Y, WANG J M, LI P Z, LIN X Y, SUN Q. Advances on studies relating to lodging resistance of rice plant[J]. Fujian Journal of Agricultural Sciences, 2021, 36(10): 1245-1254. DOI:10.19303/j.issn.1008-0384.2021.10.018. |
[4] |
吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. DOI:10.16288/j.yczz.18-213 WU B, HU W, XING Y Z. The history and prospect of rice genetic breeding in China[J]. Ereditas, 2018, 40(10): 841-857. DOI:10.16288/j.yczz.18-213 |
[5] |
王晓飞, 刘斌. 水稻抗倒伏性遗传研究现状[J]. 广东农业科学, 2010, 37(7): 5-8. DOI:10.16768/j.issn.1004-874X.2010.07.039 WANG X F, LIU B. Progress on the genetics of lodging resistance in rice (Oryza sativa L )[J]. Guangdong Agricultural Sciences, 2010, 37(7): 5-8. DOI:10.16768/j.issn.1004-874X.2010.07.039 |
[6] |
蒋明金, 大川泰一郎, 马均. 播栽方式对2个籼稻品种抗倒伏能力的影响[J]. 四川农业大学学报, 2020, 38(4): 391-398. DOI:10.16036/j.issn.1000-2650.2020.04.003. JIANG M J, OOKAWA T, MA J. Effects of planting methods on lodging resistance of two indica rice varieties[J]. Journal of Sichuan Agricultural University, 2020, 38(4): 391-398. DOI:10.16036/j.issn.1000-2650.2020.04.003. |
[7] |
LI Z Z, DENG F, ZHANG C, ZHU L, HE L H, ZHOU T, LU H, ZHU S L, ZENG Y L, ZHONG X Y, ZHOU W, CHEN Y. Can 'relative culm wall thickness' be used to evaluate the lodging resistance of rice?[J]. Archives of Agronomy and Soil Science, 2022. DOI:10.1080/03650340.2022.2046266 |
[8] |
LIANG L, ZHANG X J, LIANG J, GUO Y M. Fuzzy synthetic evaluation on stalk-like crops with biomechanical properties indices[J]. Forest Chemicals Review, 330-340. DOI:10.17762/jfcr.vi.133 |
[9] |
袁志华, 冯宝萍, 赵安庆, 梁爱琴. 作物茎秆抗倒伏的力学分析及综合评价探讨[J]. 农业工程学报, 2002, 18(6): 30-31. DOI:10.3321/j.issn:1002-6819.2002.06.008 YUAN Z H, FENG B P, ZHAO A Q, LIANG A Q. Dynamic analysis and comprehensive evaluation of crop-stem lodging resistance[J]. Transactions of the CSAE, 2002, 18(6): 30-31. DOI:10.3321/j.issn:1002-6819.2002.06.008 |
[10] |
STUBBS C J, ODUNTAN Y A, KEEP T R, NOBLE S D, ROBERTSON D J. The effect of plantweight on estimations of stalk lodging resistance[J]. Plant Methods, 2020, 16(1): 128. DOI:10.1186/s13007-020-00670-w |
[11] |
GUI M Y, WANG D, XIAO H H, TU M, LI F L, LI W C, JI S D, WANG T X, LI J Y. Studies of the relationship between rice stem composition and lodging resistance[J]. The Journal of Agricultural Science, 2018, 156(3): 387-395. DOI:10.1017/S0021859618000369 |
[12] |
田婷, 张青, 张海东. 无人机遥感在作物监测中的应用研究进展[J]. 作物杂志, 2020(5): 1-8. DOI:10.16035/j.issn.1001-7283.2020.05.001 TIAN T, ZHANG Q, ZHANG H D. Application research progress of unmanned aerial vehicle remote sensing in crop monitoring[J]. Crops, 2020(5): 1-8. DOI:10.16035/j.issn.1001-7283.2020.05.001 |
[13] |
SINGH V, AGRAWAL K K, KUMHAR B L, PATEL R. Lodging: effect on crop production and its management[J]. Krishi Science– eMagazine for Agricultural Sciences, 2020, 1(2): 58-60. |
[14] |
敖礼林. 水稻倒伏的危害与综合管控[J]. 科学种养, 2018(6): 17-18. DOI:10.13270/j.cnki.kxzh.2018.06.008. AO L L. Harm and comprehensive control of rice lodging[J]. Scientifi cPlanting and Breeding, 2018(6): 17-18. DOI:10.13270/j.cnki.kxzh.2018.06.008. |
[15] |
史学岩. 浅谈水稻倒伏的原因危害及综合防控[J]. 现代农业, 2021(3): 51-52. DOI:10.14070/j.cnki.15-1098.2021.03.019 SHI X Y. Discussion on the cause and harm of rice lodging and its comprehensive prevention and control[J]. Modern Agriculture, 2021(3): 51-52. DOI:10.14070/j.cnki.15-1098.2021.03.019 |
[16] |
ZHANG L, BIAN Z, MA B, LI X Y, ZOU Y T, XIE D, LIU J Y, REN Y H, ZHANG C Q, WANG J M, YE S H, DENG Y W, LI Q, ZHANG X M, HE Z H, LIU Q Q. Exploration and selection of elite SD1 alleles for rice design breeding[J]. Molecular Breeding, 2020, 40(79): 1-16. DOI:10.1007/s11032-020-01161-5 |
[17] |
SHAH L, YAHYA M, SHAH S M A, NADEEM M, ALI A, ALI A, WANG J, RIAZ M W, REHMAN S, WU W, KHAN RM, ABBAS A, RIAZ A, ANIS G B, SI H, JIANG H, MA C. Improving lodging resistance: using wheat and rice as classical examples[J]. International Journal of Molecular Sciences, 2019, 20(4211). DOI:10.3390/ijms20174211 |
[18] |
ZHAO X Y, ZHOU N, LAI S K, FREI M, WANG Y X, YANG L X. Elevated CO2 improves lodging resistance of rice by changing physiochemical properties of the basal internodes[J]. Ence of The Total Environment, 2018, 647: 223-231. DOI:10.1016/j.scitotenv.2018.07.431 |
[19] |
LUO X Y, WU Z F, L F, DAN Z W, YUAN Z Q, LIANG T, ZHU R S, HU Z L, WU X T. Evaluation of lodging resistance in rice based on an optimized parameter from lodging index[J]. Crop Science, 2022, 1-15. DOI:10.1002/csc2.20712 |
[20] |
YIN X H, TAO Z, HUANG M, ZOU Y B. Increasing wall thickness is more effective than increasing diameter for improving breaking resistance of rice internode[J]. Journal of Plant Biology and Crop Research, 2018, 1(1001): 1-4. DOI:10.33582/2637-7721/1001 |
[21] |
NIU Y, CHEN T X, ZHAO C C, ZHOU M X. Improving Crop lodging resistance by adjusting plant height and stem strength[J]. Agronomy Journal, 2021, 11: 2421. DOI:10.3390/agronomy11122421 |
[22] |
KASHIWAGI T, ISHIMARU K. Identification and functional analysis of a locus for improvement of lodging resistance in rice[J]. Plant Physiology, 2004, 134(2): 676-683. DOI:10.1104/pp.103.029355 |
[23] |
OIKAWA T, KOSHIOKA M, KOJIMA K, YOSHIDA H, KAWATA M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice[J]. Plant Molecular Biology, 2004, 55(5): 687-700. DOI:10.1007/s11103-004-1692-y |
[24] |
ASANO K, YAMASAKI M, TAKUNO S, MATSUOKA M. Artificial selectionfor a green revolution gene during japonica rice domestication[J]. Proceedings of the National Academy of Sciences, 2011, 108(27): 11034-11039. DOI:10.1073/pnas.1019490108 |
[25] |
ARINICHEVA I V, DARMILOVA Z D. C on st r uct ion of a mathematical model of cereal lodging[J]. Earth and Environmental Science, 2021, 699: 012046. DOI:10.1088/1755-1315/699/1/012046 |
[26] |
SHERRATT M J, BALDOCK C, HASTON J L, HOLMES D F, JONES C J P, SHUTTLEWORTH C A, WESS T J, KIELTY C M. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues[J]. Journal of Molecular Biology, 2003, 332(1): 183-193. DOI:10.1016/S0022-2836(03)00829-5 |
[27] |
罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述[J]. 西北植物学报, 2007, 27(11): 2346-2353. DOI:10.1016/S1872-2075(07)60055-7. LUO M C, TIAN C T, LI X J, LIN J X. Relationship between morphoanatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11): 2346-2353. DOI:10.1016/S1872-2075(07)60055-7. |
[28] |
PAN J F, ZHAO J L, LIU Y Z, HUANG N R, TIAN K, SHAH F, LIANG K M, ZHONG X H, LIU B. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms[J]. Scientifi c Reports, 2019, 9(1): 1-13. DOI:10.1038/s41598-019-56620-7 |
[29] |
LIU Z X, XIAO T Q, PENG G Y, LI J, ZHENG Z Y, ZHOU Q M. Microstructure evidence of rice lodging resistance based on quantitative X‐ray microtomography[J]. Agronomy Journal, 2020(113): 2165-2174. DOI:10.1002/agj2.20455 |
[30] |
ZHANG J, LI G H, HUANG Q Y, LIU Z H, DING C Q, TANG S, CHEN L, WANG S H, DING Y F, ZHANG W J. Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population[J]. The Crop Journal, 2017, 5(6): 478-487. DOI:10.1016/j.cj.2017.08.008 |
[31] |
杨青川, 艾玉廷, 鲁建承, 林森, 苗微, 韩晓日. 生物炭对水稻茎秆抗倒性的影响[J]. 沈阳农业大学学报, 2021, 52(1): 1-7. DOI:10.3969/j.issn.10001700.2021.01.001 YANG Q C, AI Y T, LU J C, LIN S, MIAO W, HAN X R. Effect of biochar on lodging resistance of rice stem[J]. Journal of Shenyang Agricultural University, 2021, 52(1): 1-7. DOI:10.3969/j.issn.10001700.2021.01.001 |
[32] |
SIREGAR A F, SIPAHUTAR I A, ANGGRIA L, HUSNAIN, YUFDI M P. Improving rice growth and yield with silicon addition in Oxisols[J]. Earth and Environmental Science, 2021, 648: 012202. DOI:10.1088/1755-1315/648/1/012202 |
[33] |
赵海成, 李红宇, 陈立强, 赫臣, 郑桂萍, 韩笑, 何文翠, 周云峰. 硅氮配施对寒地水稻产量品质及抗倒性的影响[J]. 上海农业学报, 2018, 34(4): 36-42. DOI:10.15955/j.issn1000-3924.2018.04.08. ZHAO H C, LI H Y, CHEN L Q, HE C, ZHENG G P, HAN X, HE W C, ZHOU Y F. Effects of combined application of silicon and nitrogen on yield and lodging resistance of cold-region rice[J]. Acta Agriculture Shanghai, 2018, 34(4): 36-42. DOI:10.15955/j.issn1000-3924.2018.04.08. |
[34] |
GARG K, DHAR S, JINGER D. Silicon nutrition in rice (Oryza sativa L. )– A review[J]. Annals of Agricultural Research, 2020, 41: 221-229. |
[35] |
刘慧娟, 饶玉春, 杨窑龙, 冷语佳, 黄李超, 张光恒, 胡江, 郭龙彪, 高振宇, 朱丽, 董国军, 刘坚, 颜美仙, 钱前, 曾大力. 水稻叶鞘相关性状的遗传分析[J]. 分子植物育种, 2011, 3(3): 278-287. DOI:10.3969/mpb.009.000278.mpb.009.000278 LIU H J, RAO Y C, YANG Y L, LENG Y J, HUANG L C, ZHANG G H, HU J, GUO L B, GAO Z Y, ZHU L, DONG G J, LIU J, YAN M X, QIAN Q, ZENG D L. QTL analysis of leaf sheath traits in rice(Oryza sativa L)[J]. Molecular Plant Breeding, 2011, 3: 278-287. DOI:10.3969/mpb.009.000278.mpb.009.000278 |
[36] |
徐正进, 张树林, 周淑清, 刘丽霞. 水稻穗型与抗倒伏性关系的初步分析[J]. 植物生理学通讯, 2004, 40(5): 561-563. XU Z J, ZHANG S L, ZHOU S Q, LIU L X. Primary analysis of relationship between rice panicle type and lodging resistance[J]. Plant Physiology Communications, 2004, 40(5): 561-563. |
[37] |
李国辉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 何庭蕙. 施氮对水稻茎秆抗倒伏性的影响及其形态和力学机理[J]. 中国农业科学, 2013(7): 1323-1334. DOI:10.3864/j.issn.0578-1752.2013.07.003. LI G H, ZHONG X H, TIAN K, HUANG N R, PAN J F, HE T H. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms[J]. Scientia Agricultura Sinica, 2013(7): 1323-1334. DOI:10.3864/j.issn.0578-1752.2013.07.003. |
[38] |
潘典进, 侯玲, 罗冬玉, 吴向阳, 郑文楼, 龚元春, 王军民. 籼型杂交水稻几个抗倒伏性状表现[J]. 湖北农业科学, 2019, 58(01): 15-18. DOI:10.14088/j.cnki.issn0439-8114.2019.01.003 PAN D J, HOU L, LUO D Y, WU X Y, ZHENG W L, GONG Y C, WANG J M. Several character expressions of lodging resistance of indica hybrid rice[J]. Hubei Agricultural Sciences, 2019, 58(01): 15-18. DOI:10.14088/j.cnki.issn0439-8114.2019.01.003 |
[39] |
PENG Y L, HU Y G, QIAN Q, REN D Y. Progress and prospect of breeding utilization of green revolution gene SD1 in rice[J]. Agriculture, 2021, 11, 611.. DOI:10.3390/agriculture11070611 |
[40] |
NAGAI K, HIRANO K, ANGELES-SHIM R B, ASHIKARI M. Breeding applications and molecular basis of semi-dwarfism in rice// Rice genomics, genetics and breeding[M]. Springer, Singapore. 2018: 155-176. DOI:10.1007/978-981-10-7461-5_9
|
[41] |
YU Y L, HU X J, ZHU Y X, MAO D H. Re-evaluation of the rice 'Green Revolution' gene: the weak allele SD1-EQ from japonica rice may be beneficial for super indica rice breeding in the post-Green Revolution era[J]. Molecular Breeding, 2020, 80(40). DOI:10.1007/s11032-020-01164-2 |
[42] |
TU B, TAO Z, WANG S G, ZHOU L, ZHENG L, ZHANG C, LI X Z, ZHANG X Y, YIN J J, ZHU X B, YUAN H, LI T, CHEN W L, QIN P, MA B T, WANG Y P, LI S G. Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance[J]. Journal of Integrative Plant Biology, 2022, 64(1): 23-38. DOI:10.1111/jipb.13185.PMID:34783157 |
[43] |
ZHAO D D, SON J H, LEE G S, KIM K M. Screening for a novel gene, OsPSLSq6, Using QTL analysis for lodging resistance in rice[J]. Agronomy Journal, 2021, 11, 334.. DOI:10.3390/agronomy11020334 |
[44] |
CHEN H, FANG R Q, DENG R F, LI J X. The OsmiRNA166b‐ OsHox32 pair regulates mechanical strength of rice plants by modulating cell wall biosynthesis[J]. Plant Biotechnology Journal, 2021(19): 1468-1480. DOI:10.1111/pbi.13565 |
[45] |
FAN C F, LI Y, HU Z, HU H Z, WANG G Y, LI A, WANG Y M, TU Y Y, XIA T, PENG L C, FENG S Q. Ectopic expression of a novel OsExtensin-like gene consistently enhances plant lodging resistance by regulating cell elongation and cell wall thickening in rice[J]. Plant Biotechnology Journal, 2018, 16: 254-263. DOI:10.1111/pbi.12766 |
[46] |
KASHIWAGI T, TOGAWA E, HIROTSU N, ISHIMARU K. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L )[J]. Theoretical and Applied Genetics, 2008, 117(5): 749-757. DOI:10.1007/s00122-008-0816-1 |
[47] |
KO H, AYAKO O, TOKUNORI H, ORDONIO R, SHINOZKI Y, ASANO K, KITANO H, MATSUOKA M. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance[J]. Plos One, 2014, 9(7): 1-9. DOI:10.1371/journal.pone.0096009 |
[48] |
AYA K, HOBO T, SATO-IZAWA K, UEGUCHI-TANAKA M, KITANO H, MATSUOKA M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway[J]. Plant and Cell Physiology, 2014, 55(5): 897-912. DOI:10.1093/pcp/pcu023 |
[49] |
刘畅, 李来庚. 水稻抗倒伏性状的分子机理研究进展[J]. 中国水稻科学, 2016, 30(02): 216-222. DOI:10.16819/j.1001-7216.2016.5118 LIU C, LI L G. Advance in molecular understanding of rice lodging resistance[J]. Chinese Journal of Rice Science, 2016, 30(02): 216-222. DOI:10.16819/j.1001-7216.2016.5118 |
[50] |
ZHAO D D, SON J H, FAROOQ M, KIM K M. Identification of candidate gene for internode length in rice to enhance resistance to lodging using qtl analysis[J]. Plants, 2021, 10: 1369. DOI:10.3390/plants10071369 |
[51] |
WANG J X, WANG T, WANG Q, TANG X D, REN Y, ZHENG H Y, LIU K, YANG L M, JIANG H, LI Y D, LIU Q, ZOU D T, ZHENG H L. QTL mapping and candidate gene mining of flag leaf size traits in Japonica rice based on linkage mapping and genome-wide association study[J]. Molecular Biology Reports, 2022, 49(1): 63-71. DOI:10.1007/s11033-021-06842-8 |
[52] |
SPIELMEYER W, ELLIS M H, CHANDLER P M. Semidwarf (SD- 1), "green revolution"rice, contains a defective gibberellin 20-oxi-dase gene[J]. Proceedings of the National Academy of Sciences, 2002, 99(13): 9043-9048. DOI:10.1073/pnas.132266399 |
[53] |
MONNA L, KITAZAWA N, YOSHINO R, SUZUKI J, MASUDA H, MAEHARA Y, TANJI M, SATO M, NASU S, MINOBE Y. Positional cloning of rice semidwarfing gene, sd-1: Rice "Green Revolution Gene" encodes a mutant enzyme involved in Gibberellin synthesis[J]. DNA Research, 2002, 9(1): 11-17. DOI:10.1093/dnares/9.1.11 |
[54] |
SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, ITOH H, NISHIMURA A, SWAPAN D, ISHIYAMA K, SAITO T, KOBAYASHI M, KHUSH G S, KITANO H, MATSUOKA M. A mutant gibberellinsynthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702. DOI:10.1038/416701a |
[55] |
OIKAWA T, KOSHIOKA M, KOJIMA K, YOSHIDA H, KAWATAM. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice[J]. Plant Molecular Biology, 2004, 55(5): 687-700. DOI:10.1007/s11103-004-1692-y |
[56] |
ZHANG L Z, HUANG J F, WANG Y Y, XU R, YANG Z Y, ZHAO Z G, LIU S J, TIAN Y L, ZHENG X M, LI F, WANG J R, SONG Y, LI J Q, CUI Y X, ZHANG L F, CHENG Y L, LAN J H, QIAO W H, YANG Q W. Identification and genetic analysis of qCL12, a novel allele of the "green revolution" gene SD1 from wild rice (Oryza rufi pogon) that enhances plant height[J]. BMC Genetics, 2020, 21(62): 1-12. DOI:10.1186/s12863-020-00868-w |
[57] |
SANTOSO T J, TRIJATMIKO K R, CHAR S N, YANG B, WANG K. Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice[J]. Earth and Environmental Science, 2020, 482: 012027. DOI:10.1088/1755-1315/482/1/012027 |
[58] |
LONG W X, DAN D, YUAN Z Q, CHEN Y P, JIN J, YANG W L, ZHANG Z H. Deciphering the genetic basis of lodging resistance in wild rice Oryza longistaminata[J]. Frontiers in Plant Science, 2020, 11: 628. DOI:10.3389/fpls.2020.00628 |
[59] |
JIANG M J, YAMAMOTO E, YAMAMOTO T, MATSUBARA K, KATO H, ADACHI S, NOMURA T, KAMAHORA E, MA J, OOKAWA T. Mapping of QTLs associated with lodging resistance in rice (Oryza sativa L.) using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193[J]. Plant Growth Regulation, 2019, 87: 267-276. DOI:10.1007/s10725-018-0468-3 |
[60] |
SOWADAN O, LI D, ZHANG Y Q, ZHU S S, HU X X, BHANBHRO L B, EDZESI W M, DANG X J, HONG D L. Mining of favorable alleles for lodging resistance traits in rice (Oryza sativa) through association mapping[J]. Planta, 2018, 248(1): 155-169. DOI:10.1007/s00425-018-2885-y |
[61] |
GUO Z L, LIU X, ZHANG B, YUAN X J, XING Y Z, LIU H Y, LUO L J, CHEN G X, XIONG L Z. Genetic analyses of lodging resistance and yield provide insights into post‐Green‐Revolution breeding in rice[J]. Plant Biotechnology Journal, 2021, 19: 814-829. DOI:10.1111/pbi.13509 |
[62] |
ZHANG B, QI F X, HU G, YANG Y K, ZHANG L, MENG J H, HAN Z M, ZHOU X C, LIU H Y, AYAAD M, XING Y Z. BSA-seq-based identification of a major additive plant height QTL with an effect equivalent to that of Semi-dwarf 1 in a large rice F2 population[J]. The Crop Journal, 2021(42): 1428-1437. DOI:10.1016/j.cj.2020.11.011 |
[63] |
YANG H L, YANG Q Q, KANG Y W, ZHANG M, ZHAN X D, CAO L Y, CHENG S H, WU W X, ZHANG Y X. Finding stable QTL for plant height in super hybrid rice[J]. Agriculture, 2022, 12: 165. DOI:10.3390/agriculture12020165 |
[64] |
LI F C, LIU X T, XU H, XU Q. A novel FC17/CESA4 mutation causes increased biomass saccharification and lodging resistance by remodeling cell wall in rice[J]. Biotechnology for Biofuels, 2018, 11: 298. DOI:10.1186/s13068-018-1298-2 |
[65] |
MENG B X, WANG T, LUO Y, XU D Z, LI L Z, DIAO Y, GAO Z Y, HU Z L, ZHENG X F. Genome-wide association study identified novel candidate loci/genes affecting lodging resistance in rice[J]. Genes, 2021, 12(5): 718. DOI:10.3390/genes12050718 |
[66] |
陈桂华, 邓化冰, 张桂莲, 唐文帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析[J]. 中国农业科学, 2016, 49(3): 407-417. DOI:10.3864/j.issn.0578-1752.2016.03.001 CHEN G H, DENG H B, ZHANG L G, TANG W B, HUANG H. The correlation of stem characters and lodging resistance and combining ability analysis in rice[J]. Scientia Agricultura Sinica, 2016, 49(3): 407-417. DOI:10.3864/j.issn.0578-1752.2016.03.001 |
[67] |
孙旭初. 水稻茎秆抗倒伏性的研究[J]. 中国农业科学, 1987(4): 32-37. SUN X C. Study on lodging resistance of rice stem[J]. Scientia Agricultura Sinica, 1987(4): 32-37. |
[68] |
梁康迳, 杨仁崔, 杨蜀岚. 水稻茎秆性状的遗传效应分析// 全国作物育种学术讨论会论文集[M]. 北京: 中国农业科学技术出版杜, 1998: 80-86. LIANG K J, YANG R C, YANG S L. Genetic effect analysis of stem traits in rice// Proceedings of the National Symposium on Crop Breeding[M]. Beijing: China Agriculture Science and Technology Press, 1998: 80-86. |
[69] |
梁康迳, 王雪仁, 章清杞, 陈志雄. 基因型×环境互作效应对水稻茎秆抗倒性杂种优势的影响[J]. 福建农业大学学报, 2000(1): 12-17. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2000.01.003 LIANG K J, WANG X R, ZHANG Q Q, CHEN Z X. Effect of genotype×environment interaction on heterosis for lodging resistance of the culm in rice[J]. Journal of Fujian Agricultural University, 2000(1): 12-17. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2000.01.003 |
[70] |
KEERTHIRAJ B, BIJU S. Genetic variability, heritability and genetic advance of yield and lodging-related traits in rice (Oryza sativa L)[J]. Electronic Journal of Plant Breeding, 2020, 11(4): 1093-1098. DOI:10.37992/2020.1104.177 |
[71] |
邹德堂, 崔成焕, 赵宏伟, 秋太权. 水稻倒伏指数的配合力分析[J]. 东北农业大学学报, 1997(04): 17-22. DOI:10.19720/j.cnki.issn.1005-9369.1997.04.003 ZOU D T, CUI C H, ZHAO H W, QIU T Q. Combining ability analysis of lodging index in rice[J]. Journal of Northeast Agricultural University, 1997(04): 17-22. DOI:10.19720/j.cnki.issn.1005-9369.1997.04.003 |
[72] |
梁康迳, 林文雄, 王雪仁, 郭玉春, 梁义元, 陈志雄. 水稻茎秆抗倒性的遗传及基因型×环境互作效应研究[J]. 福建农业学报, 2000(3): 9-15. DOI:10.19303/j.issn.1008-0384.2000.03.002. LIANG K J, LIN W X, WANG X R, GUO Y C, LIANG Y Y, CHEN Z X. Genetic effects and genotype×environment interactions for the lodging resistance of the culm of rice(Oryza sativa L)[J]. Fujian Journal of A gricultural Sciences, 2000(3): 9-15. DOI:10.19303/j.issn.1008-0384.2000.03.002. |
[73] |
WANG W X, JIE D U, ZHOU Y Z, ZENG Y J, TAN X M, PAN X H, SHI Q H, WU Z M, ZENG Y H. Effects of different mechanical direct seeding methods on grain yield and lodging resistance of early indica rice in South China[J]. Journal of Integrative Agriculture, 2021, 20(5): 1204-1215. DOI:10.1016/S2095-3119(20)63191-4. |
[74] |
王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响[J]. 中国水稻科学, 2020, 34(1): 11-46-56. DOI:10.16819/j.1001-7216.2020.9075 WANG W X, ZHOU Y Z, ZENG Y J, WU Z M, TAN X M, PAN X H, SHI Q H, ZENG Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica rice in South China[J]. China Rice Science, 2020, 34(1): 46-56. DOI:10.16819/j.1001-7216.2020.9075 |
[75] |
LIU Q H, MA J Q, ZHAO Q L, ZHOU X B. Physical traits related to rice lodging resistance under different simplified-cultivation methods[J]. Agronomy Journal, 2018, 110(1): 127. DOI:10.2134/agronj2017.09.0548 |
[76] |
HUANG M, TAO Z, LEI T, CAO F B, CHEN J N, YIN X H, ZOU Y B, LIANG T F. Improving lodging resistance while maintaining high grain yield by promoting pre-heading growth in rice[J]. Field Crops Research, 2021, 270: 108212. DOI:10.1016/j.fcr.2021.108212 |
[77] |
王振昌, 郭相平, 杨静晗, 陈盛, 黄双双, 王甫, 邱让建, 刘春伟, 操信春, 朱建彬, 高雅娴. 旱涝交替胁迫对水稻干物质生产分配及倒伏性状的影响[J]. 农业工程学报, 2016, 32(24): 114-123. DOI:10.11975/j.issn.1002-6819.2016.24.015. WANG Z C, GUO X P, YANG J H, CHEN S, HUANG S S, WANG F, QIU R J, LIU C W, CAO X C, ZHU J B, GAO Y X. Effect of alternate flooding and drought stress on biomass production, distribution and lodging characteristic of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 114-123. DOI:10.11975/j.issn.1002-6819.2016.24.015. |
[78] |
许俊伟, 孟天瑶, 荆培培, 张洪程, 李超, 戴其根, 魏海燕, 郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776. DOI:10.3724/SP.J.1006.2015.01767 XU J W, MENG T Y, JING P P, ZHANG H C, LI C, DAI Q G, WEI H Y, GUO B W. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice[J]. ACTA Agronomica Sinica, 2015, 41(11): 1767-1776. DOI:10.3724/SP.J.1006.2015.01767 |
[79] |
蒋明金, 王海月, 何艳, 王春雨, 李娜, 杨志远, 孙永健, 马均. 氮肥管理对直播杂交水稻抗倒伏能力的影响[J]. 核农学报, 2020, 34(01): 157-168. DOI:10.11869/j.issn.100-8551.2020.01.0157. JIANG M J, WANG H Y, HE Y, WANG C Y, LI N, YANG Z Y, SUN Y J, MA J. Effects of nitrogen management on lodging resist a nce of direct-seeded r ice[J]. Jo ur nal of Nucle ar Ag riculture Science, 2020, 34(01): 157-168. DOI:10.11869/j.issn.100-8551.2020.01.0157. |
[80] |
HONG W Y, CHEN Y J, HUANG S H, LI Y Z, WANG Z M, TANG X R, PAN S G, TIAN H, MO Z W. Optimization of nitrogen–silicon (N-Si) fertilization for grain yield and lodging resistance of earlyseason indica fragrant rice under different planting methods[J]. European Journal of Agronomy, 2022, 136: 126508. DOI:10.1016/j.eja.2022.126508 |
[81] |
ZHANG S G, YANG Y C, ZHAI W W, TONG Z H, SHEN T L, LI Y C C, ZANG M, SIGUA G C, CHEN J Q, DING F J. Controlled‐release nitrogen fertilizer improved lodging resistance and potassium and silicon uptake of direct-seeded rice[J]. Crop Science, 2019, 59(6): 2733-2740. DOI:10.2135/cropsci2018.12.0765 |
[82] |
RAO N A, SREEKANTH B, MADHAV M S, REDDY S N. Physico-chemical characterization of lodging tolerance in rice (Oryza sativa)[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(8): 1770-1778. DOI:10.20546/ijcmas.2017.609.219 |
[83] |
ZHANG W J, WU L M, DING Y F, YAO X, WU X R, WENG F, LI G H, LIU Z H, TANG S, DING C Q, WANG S H. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa)[J]. Journal of Plant Research, 2017, 130: 859-871. DOI:10.1007/s10265-017-0943-3 |
[84] |
BHIAH K M, GUPPY C, LOCKWOOD P, JESSOP R. Effect of potassium on rice lodging under high nitrogen nutrition// World Congress of Soil Science: Soil Solutions for A Changing World[C]. 2010.
|
[85] |
IDRIS M, HOSSAIN M M, CHOUDHURY F A. The effect of silicon on lodging of rice in presence of added nitrogen[J]. Plant and Soil, 1975, 43(1): 691-695. DOI:10.1007/BF01928531. |
[86] |
范永义, 杨国涛, 陈敬, 蒋芬, QADIR M, 陈永军, 胡运高. 硅钾肥配施对水稻茎秆理化性状及抗倒伏能力的影响[J]. 西北植物学报, 2017, 37(4): 751-757. DOI:10.7606/j.issn.1000-4025.2017.04.0751. FAN Y Y, YANG G T, CHEN J, JIANG F, QADIR M, CHEN Y J, HU Y G. The Physical chemical characters and lodging resistance of rice stem with silicon potassium collocation application[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(4): 751-757. DOI:10.7606/j.issn.1000-4025.2017.04.0751. |
[87] |
KATSUBE T, KOSHIMIZU Y. Node blast due to lodging of rice plant[J]. Annual Report of the Society of Plant Protection of North Japan, 1970, 1970: 32-38. |
[88] |
WENG F, ZHANG W J, WU X R, XU X, DING Y F, LI G H, LIU Z H, WANG S H. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice[J]. Scientifi c Reports, 2017, 7(1): 1-9. DOI:10.1038/srep46596 |
[89] |
HITAKA N. Studies on the Lodging of Rice Plant (4): The effect of rain water deposition on lodging[J]. Journal of Agricultural Meteorology, 1966, 22: 59-64. DOI:10.2480/agrmet.22.59 |
[90] |
陆展华, 王晓飞, 刘维, 卢东柏, 王石光, 薛皦, 何秀英. 优质稻粤农丝苗抗倒伏影响因素和遗传分析[J]. 植物遗传资源学报, 2021, 22(3): 638-645. DOI:10.13430/j.cnki.jpgr.20200918003 LU Z H, WANG X F, LIU W, LU D B, WANG S G, XUE J, HE X Y. Influencing factors and genetic analysis of lodging resistance of highquality rice Yuenong Simiao[J]. Journal of Plant Genetic Resources, 2021, 22(3): 638-645. DOI:10.13430/j.cnki.jpgr.20200918003 |
[91] |
WANG X F, HE X Y, LU Z H, LIU W, LU D B, WANG S G, XUE J.. A breeding method for new lodging resistant rice varieties based on phenotype[J]. Plant Diseases and Pests, 2020, 11(4): 1-5,12. DOI:10.19579/j.cnki.plant-d.p.2020.04.001 |
[92] |
闫晓霞, 王丰, 柳武革, 廖亦龙, 朱满山, 付崇允, 霍兴, 刘迪林. 水稻直播适应性的遗传基础与育种策略[J]. 广东农业科学, 2022, 49(1): 1-13. DOI:10.16768/j.issn.1004-874X.2022.01.001 YAN X X, WANG F, LIU W G, LIAO Y L, ZHU M S, FU C Y, HUO X, LIU D L. Genetic basis of direct seeding adaptability in rice and its breeding strategy[J]. Guangdong Agricultural Sciences, 2022, 49(1): 1-13. DOI:10.16768/j.issn.1004-874X.2022.01.001 |
[93] |
GENTZEL I N, OHLSON E W, REDINBAUGH M G, WANG G L. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants[J]. Stress Biology, 2022, 2: 2. DOI:10.1007/s44154-021-00026-x |
[94] |
APRIANA A, SANTOSO T J, SISHARMINI A, REFLINUR, AMBARWATI A D, HADIARTO T, SUSTIPRIJATNO, NURYATI. Phenotypic and genetic stability evaluation of the targeted GA20ox-2 gene mutation in CRISPR/Cas9 mutant rice derived from Mentong cultivar//AIP Conference Proceedings[C]. AIP Publishing LLC, 2022: 040006. DOI: 10.1063/5.0075603.
|
[95] |
NOMURA T, SEKI Y, MATSUOKA M, YANO K, CHIGIRA K, ADACHI S, PINERA-CHAVEZ F J, REYNOLDS M, OHKUBO S, OOKAWA T. Potential of rice landraces with strong culms as genetic resources for improving lodging resistance against super typhoons[J]. Scientific Reports, 2021, 11: 15780. DOI:10.1038/s41598-021-95268-0 |
[96] |
TAO Z, LEI T, CAO F B, CHEN J N, YIN X H, LIANG T F, HUANG M. Contrasting characteristics of lodging resistance in two super-rice hybrids differing in harvest index[J]. Phyton, 2022, 91(2): 429-437. DOI:10.32604/phyton.2022.016955 |
[97] |
ZHANG P, OUYANG K J, ZHONG Z Z, GAO Y, TONG Z H, SUN S R, TONG H H. Lodging Resistance of aromatic CMS line Zhongzhe A and its derived lines[J]. American Journal of Plant Sciences, 2019, 10(3): 351-368. DOI:10.4236/ajps.2019.103026 |
[98] |
DING C, LUO X K, QIONG W U, LU B, DING Y F, WANG S H, LI G H. Compact plant type rice has higher lodging and N resistance under machine transplanting[J]. Journal of Integrative Agriculture, 2021, 20(1): 65-77. DOI:10.1016/S2095-3119(20)63229-4 |
[99] |
马雅美, 张少红, 赵均良. 水稻直播相关性状遗传分析及分子机制研究进展[J]. 广东农业科学, 2021, 48(10): 13-22. DOI:10.16768/j.issn.1004-874X.2021.10.002 MA Y M, ZHANG S H, ZHAO J L. Research progress in genetic analysis and molecular mechanisms of rice direct-seeding related traits[J]. Guangdong Agricultural Sciences, 2021, 48(10): 13-22. DOI:10.16768/j.issn.1004-874X.2021.10.002 |
[100] |
CHEN L M, YI Y H, WANG W X, ZENG Y J. Innovative furrow ridging fertilization under a mechanical direct seeding system improves the grain yield and lodging resistance of early indica rice in South China[J]. Field Crops Research, 2021, 270: 108184. DOI:10.1016/j.fcr.2021.108184 |
[101] |
ZHAO Q L, XIN C Y, LIU Q H, JIANG X, YANG J, MA H. Effects of continuous straw return and fertilization on rice lodging resistance[J]. Chilean Journal of Agricultural Research, 2022, 82(1): 146-156. DOI:10.4067/S0718-5839202200010146 |
[102] |
王文霞, 易艳红, 周燕芝, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 旱直播提高南方旱稻产量及抗倒伏性状[J]. 核农学报, 2020, 34(2): 383-391. DOI:10.11869/j.issn.100-8551.2020.02.0383 WANG W X, YI Y H, ZHOU Y Z, TAN X M, ZENG Y J, SHI Q H, PAN X H, ZENG Y H. Study on improving the grain yield and lodging resistance of upland rice by dry direct seeded in South China[J]. Journal of Nuclear Agricultural Science, 2020, 34(2): 383-391. DOI:10.11869/j.issn.100-8551.2020.02.0383 |
[103] |
易艳红, 王文霞, 曾勇军, 谭雪明, 吴自明, 陈雄飞, 潘晓华, 石庆华, 曾研华. 人工模拟机械开沟穴直播提高早籼稻茎秆抗倒伏能力及产量[J]. 中国农业科学, 2019, 52(15): 2729-2742. DOI:10.3864/j.issn.0578-1752.2019.15.016 YI Y H, WANG W X, ZENG Y J, TAN X M, WU Z M, CHEN X F, PAN X H, SHI Q H, ZENG Y H. rtificial simulation of hill-drop drilling mechanical technology to improve yield and lodging resistance of early season indica rice[J]. Scientia Agricultura Sinica, 2019, 52(15): 2729-2742. DOI:10.3864/j.issn.0578-1752.2019.15.016 |
[104] |
TERASHIMA K, TANIGUCHI T, OGIWARA H, UMEMOTO T. Effect of field drainage on root lodging tolerance in direct-sown rice in flooded paddy field[J]. Plant Production Science, 2003, 6(4): 255-261. DOI:10.1626/pps.6.255 |
[105] |
许玉梅. 水稻倒伏及防范措施[J]. 河南农业, 2020(10): 34. DOI:10.15904/j.cnki.hnny.2020.10.026 XU Y M. Rice lodging and preventive measures[J]. Agriculture of Henan, 2020(10): 34. DOI:10.15904/j.cnki.hnny.2020.10.026 |
[106] |
孙加威. 不同氮肥运筹和栽培方式下配施钾肥对水稻产量、肥料利用效率及抗倒伏性的影响[D]. 成都: 四川农业大学, 2016. SUN J C. Effect of potassium fertilizer on hybrid rice yield, fertilizer use efficiency, lodging resistance under different transplanting methods and nitrogen fertilizer application[D]. Chengdu: Sichuan Agricultural University, 2016. |
[107] |
MUKHERJEE D. New approach to increasing rice (Oryza sativa L ) lodging resistance and biomass yield through the use of growth retardants[J]. Journal of Cereal Research, 2020, 12(3): 247-256. DOI:10.25174/2582-2675/2020/103862 |
[108] |
CORBIN J L, WALKER T W, ORLOWSKI J M, KRUTZ L J, GORE J, COX M S, GOLDEN B R. Evaluation of trinexapac-ethyl and nitrogen management to minimize lodging in rice[J]. Agronomy Journal, 2016, 108(6): 2356-2370. DOI:10.2134/agronj2016.04.0185 |
[109] |
FUKAZAWA M, SHIRAKAWA N. Effects of inabenfide (4'-chloro- 2'-(α-hydroxybenzyl)-isonicotinanilide) on growth, lodging, and yield components of rice[J]. Plant Production Science, 2001, 4(2): 118-125. DOI:10.1626/pps.4.118 |
[110] |
ZHANG W J, YAO X, DUAN X J, LIU Q M, TANG Y Q, LI J Y, LI G H, DING Y F, LIU Z H. Foliar application uniconazole enhanced lodging resistance of hybrid indica rice by altering basal stem quality under poor light stress[J]. Agronomy Journal, 2021, 114(1): 524-544. DOI:10.1002/agj2.20753 |
[111] |
徐富贤, 蒋鹏, 周兴兵, 刘茂, 张林, 熊洪, 朱永川, 郭晓艺. 多效唑对杂交中稻不同密肥群体产量和抗倒伏性的影响[J]. 核农学报, 2020, 34(5): 1088-1096. DOI:10.11869/j.issn,100-8551.2020.05.1088 XU F X, JIANG P, ZHOU X B, LIU M, ZHANG L, XIONG H, ZHU Y C, GUO X Y. Effects of paclobutrazol on yield and lodging resistance with different dense-fertilizer population in mid-season hybrid rice[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 1088-1096. DOI:10.11869/j.issn,100-8551.2020.05.1088 |
[112] |
文廷刚, 王伟中, 杨文飞, 杜小凤, 王泽港, 贾艳艳, 钱新民, 孙爱侠, 施洪泉, 顾大路. 水稻茎秆形态特征与抗倒伏能力对外源植物生长调节剂的响应差异[J]. 南方农业学报, 2020, 51(1): 48-55. DOI:10.3969/j.issn.2095-1191.2020.01.007. WEN T G, WANG W Z, YANG W F, DU X F, WANG Z G, JIA Y Y, QIAN X M, SUN A X, SHI H Q, GU D L. Morphological characteristics and lodging resistance of rice stems and its response to exogenous plant growth regulators[J]. Journal of Southern Agriculture, 2020, 51(1): 48-55. DOI:10.3969/j.issn.2095-1191.2020.01.007. |
[113] |
FERRARI S, POLYCARPO G D V, VARGAS P F, FERNANDES A M, CUNHA M L O, PAGLIARI P. Mix of trinexapac-ethyl and nitrogen application to reduce upland rice plant height and increase yield[J]. Plant Growth Regulation, 2022, 96(1): 209-219. DOI:10.1007/s10725-021-00770-0 |
[114] |
ZHAO X Y, ZHOU N, LAI S K, FREI M, WANG Y X, YANG L X. Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes[J]. Science of the total environment, 2019, 647: 223-231. DOI:10.1016/j.scitotenv.2018.07.431 |
[115] |
LI X H, LI X Z, LIU W, WEI B H, XU X L. A UAV-based framework for crop lodging assessment[J]. European Journal of Agronomy Journal, 2021, 123: 126201. DOI:10.1016/j.eja.2020.126201 |
[116] |
LIU T, LI R, ZHONG X C, JIANG M, JIN X L, ZHOU P, LIU S P, SUN C M, GUO W S. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images[J]. Agricultural and Forest Meteorology, 2018, 252: 144-154. DOI:10.1016/j.agrformet.2018.01.021 |
[117] |
YANG M D, BOUBIN J G, TSAI H P, TSENG H H, HSU Y C, STEWART C C. Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet[J]. Computers and Electronics in Agriculture, 2020, 179: 105817. DOI:10.1016/j.compag.2020.105817 |
[118] |
WILKE N, SIEGMANN B, KLINGBEIL L, BURKART A, KRASKA T, MULLER O, DOORN A V, HEINEMANN S, RASCHER U. Quantifying lodging percentage and lodging severity using a UAVBased canopy height model combined with an objective threshold approach[J]. Remote Sensing, 2019, 11(5): 515. DOI:10.3390/rs11050515 |
[119] |
WU D, WU D, FENG H, DUAN L F, DAI G X, LIU X, WANG K, YANG P, CHEN G X, GAY A P, DOONAN J H, NIU Z Y, XIONG L Z, YANG W. A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits[J]. Plant Communications, 2021, 2(2): 100165. DOI:10.1016/j.xplc.2021.100165 |
[120] |
ODUNTAN, Y A, STUBBS C J, ROBERTSON D J. High throughput phenotyping of cross-sectional morphology to assess stalk lodging resistance[J]. Plant Methods, 2022, 18: 1. DOI:10.1186/s13007-021-00833-3 |
[121] |
SHRESTHA S, LAZA M. R C, MENDEZ K V, BHOSALE S, DINGKUHN MThe blaster: A methodology to induce rice lodging at plot scale to study lodging resistance[J]. Field Crops Research, 2020, 245: 107663. DOI:10.1016/j.fcr.2019.107663 |
[122] |
周平, 周恺, 刘涛, 武威, 孙成明. 水稻倒伏监测研究进展[J]. 中国农机化学报, 2019, 40(10): 162-168. DOI:10.13733/j.jcam.issn.2095-5553.2019.10.27 ZHOU P, ZHOU K, LIU T, WU W, SUN C M. Progress in monitoring research on rice lodging[J]. Journal of Chinese Agriculture Mechanization, 2019, 40(10): 126-168. DOI:10.13733/j.jcam.issn.2095-5553.2019.10.27 |
(责任编辑 邹移光)