广东农业科学  2023, Vol. 50 Issue (10): 1-10   DOI: 10.16768/j.issn.1004-874X.2023.10.001.
0

文章信息

引用本文
潘永贵. 果实表皮组织对采后失水影响研究进展[J]. 广东农业科学, 2023, 50(10): 1-10.   DOI: 10.16768/j.issn.1004-874X.2023.10.001
PAN Yonggui. Research Progress in the Effects of Epidermal Tissue on Postharvest Fruit Water Loss[J]. Guangdong Agricultural Sciences, 2023, 50(10): 1-10.   DOI: 10.16768/j.issn.1004-874X.2023.10.001

基金项目

海南省自然科学基金高层次人才项目(320RC496)

作者简介

潘永贵(1970—),博士,教授,博士生导师,海南省拔尖人才,海南省515层次人才,海南省食品科学技术学会理事,美国食品技术协会成员,全国研究生教育评估监测专家。目前在海南大学食品科学与工程学院从事科研教学工作,任食品科学与工程系主任,主要研究方向为热带农产品采后生物与技术。先后主持国家自然科学基金项目、海南省自然科学基金高层次人才项目等省部级以上科研项目10余项,获海南省科技进步二等奖和海南省教改项目二等奖各1项、海南大学教学成果奖特等奖1项。在国内外期刊发表学术论文150余篇,其中SCI/EI收录50余篇;主编专著教材6部;获授权国家发明专利2件。海南省高校精品在线开放课程《食品生物化学》负责人,曾获“海南大学优秀教师”“五一劳动之星”等称号。潘永贵(1970—),男,博士,教授,研究方向为热带农产品采后生物与技术,E-mail:yongui123@126.com.

文章历史

收稿日期:2023-08-22
果实表皮组织对采后失水影响研究进展
潘永贵     
海南大学食品科学与工程学院,海南 海口 570228
摘要:水分是果蔬中含量最丰富的成分,对于维持果实感官品质以及正常的生理代谢活动具有重要意义。然而,采后果实由于被切断了组织与母体的联系,使得果实水分因蒸发和呼吸作用而减少,继而引发了包括失重、皱缩、变色、软化、易遭受病原菌侵染和加速衰老等一系列问题,大大降低了采后果实的耐贮性和抗病性,并直接影响到果实的商品价值和经济价值。尽管采前、采收、采后众多因素均会影响采后果实水分的丧失,但作为控制水分流失的直接屏障,表皮组织在果实水分保持中扮演着至关重要的角色。本文以果实表皮组织作为切入点,着重从果实表皮组织结构(包括表皮细胞、角质层、自然孔道以及毛状体等)、表皮组织化学成分(包括蜡质、角质、多糖和酚类等)、控制果实表皮水分流失的分子生物学机制(包括与水分控制相关的蜡质基因、蜡质代谢调控)等3个方面,围绕果实表皮组织对采后失水的影响进行综述;同时,对当前该研究领域存在的问题进行总结,希望这些研究成果能够为更深入探索表皮组织在采后果实品质保持机制和寻求控制果实水分损失方法提供有益的借鉴和参考。
关键词果实    表皮组织    失水    角质层    蜡质    
Research Progress in the Effects of Epidermal Tissue on Postharvest Fruit Water Loss
PAN Yonggui     
School of Food Science and Engineering, Hainan University, Haikou 570228, China
Abstract: Water is the most abundant component in fruits and vegetables, and it plays a significant role in maintaining the sensory quality and normal physiological metabolic in fruits. However, the tissues of postharvest fruits are cut off the connection from the parent plant, which result in a reduction of fruit moisture due to evaporation and respiration. This leads to a series of issues, including weight loss, wrinkling, browning, softening, susceptibility to pathogen infection, and accelerating aging. These problems significantly reduce the shelf life and disease resistance of postharvest fruits, directly impacting their commercial and economic value. Many factors such as before, during and after harvesting can influence the water loss of fruit, however, as a crucial barrier in controlling water loss, the fruit epidermal tissue plays a key role in maintaining fruit moisture. In this article, it takes the epidermal tissue of fruit as a starting point and focuses on three aspects: The structure of the epidermal tissue (including epidermal cells, cuticle layer, natural openings, and trichomes), the chemical composition of the epidermal tissue (including waxes, cutin, polysaccharides, and phenolic compounds), and the molecular biology mechanisms that control fruit water loss through the epidermal tissue (including wax-related genes and wax metabolism regulation), and the impacts of the epidermal tissue on postharvest water loss in fruits are reviewed. Moreover, it summarizes the current challenges in this research field, with the hope that these findings can provide valuable references and insights for further exploration of the mechanisms in which epidermal tissue contributes to maintaining fruit quality after harvest and seeking methods to control fruit water loss.
Key words: fruit    epidermal tissue    water loss    cuticle    waxiness    

水分在采后果蔬中具有重要的生物和结构功能[1]。一方面,水分是大部分果实中含量最高的成分,一般在65%~95% 之间,直接决定着果实的色泽、质地和饱满度;同时,水分直接参与果实采后各种代谢活动[1]。但是,果实采后由于失去了与母体的联系,无法继续从土壤中获取水分,而呼吸和蒸腾作用仍然进行,使得采后果实贮藏期间不可避免出现失水。随着果实水分丧失、质量下降、硬度降低,表皮出现萎焉皱缩[2],甚至导致一些果实(如荔枝、龙眼等)出现褐变[3-5]、风味丧失,严重降低了果实的品质。一般而言,大部分果蔬采后失水率达到5%~10% 就会失去商品价值[6]。同时,失水促使果实呼吸作用异常增强、某些水解作用加强、酶活性增加,加速果实体内水分的流失和营养物质的分解消耗,正常的生理代谢遭到破坏,促进了果实的衰老,大大削弱了果实的耐贮性和抗病性[7]。因此,失水是导致采后果实品质下降、货架寿命缩短的主要因素之一。

尽管水分流失对采后果实品质的直接和间接影响均非常明显,但水分流失机制是一个复杂的过程,受多种因素的影响,如果实的生理生化和物理机械特性以及生产、收获和采后处理等[6]。事实上,这些影响因素本质上属于外界因素,果实本身的组织特性才是果实失水的决定性因素。果实在采后贮运过程中,水分主要通过表皮组织、茎疤和花萼流失[8]。其中表皮组织是果实组织最外一层组织,在采后果蔬中,包括气体交换、水分损失、病菌感染、化学药剂的渗透、对温度的应力和机械损伤的抵抗力、芳香化合物的挥发与质地的变化等均开始于果蔬表面[9]。因此,对于果实表皮组织在采后贮运中的变化及其与果实品质(包括水分)之间关系的研究日益受到重视,尤其是对果实角质层与采后果实品质之间的关系已成为目前研究热点之一。为此,本文就国内外表皮组织结构对采后果实失水的影响研究进行综述,以期为今后进一步深入研究果实失水机制以及寻求控制果实水分损失的措施提供理论依据。

1 表皮组织结构对采后果实失水的影响 1.1 表皮细胞对采后果实失水的影响

表皮组织主要由表皮细胞构成,水分蒸发首先需要通过由表皮细胞组成的表皮组织。一般而言,表皮细胞越小、排列越紧密且表皮细胞层数越多,水分流经时受到的阻力越大,则越有利于水分保持。刘国成等[10]研究发现,‘寒富’品种苹果的果皮细胞较小、排列较紧密且细胞层数较多,而‘富士’品种苹果的果皮细胞比较细长、排列相对疏松,因此后者贮藏期间失水较多,并更易引起生理代谢紊乱。同样,与‘海沃德’品种猕猴桃相比,‘金福’品种猕猴桃表皮细胞层数多、厚度大,且在贮藏后期形状仍较规则、排列仍较紧密,故后者在不同温度下贮藏期间的水分丧失均低于前者[11]

此外,随着果实成熟衰老,许多果实细胞间隙逐渐增大甚至表皮组织细胞出现崩溃,导致水分蒸发加快。例如,番茄果实随着贮藏时间延长,细胞间隙逐渐增大,果实失水率随之提高[12]。西番莲随着贮藏时间延长,果实表皮细胞出现瓦解甚至完全解体,海绵层细胞裂解,果实失水严重,并导致果皮变薄皱缩[13]。但在西番莲果实中却发现,成熟度高的果实失重率却低于成熟度低的果实[14]

1.2 角质层对采后果实失水的影响

表皮细胞最显著的特征是其外壁表面常覆盖着一层称为角质层的脂肪类物质。角质层由于特殊的化学组成而使其具有较强的疏水性,成为水分扩散的主要屏障[15],对于无孔道的表皮组织而言,角质层甚至是唯一的屏障[16]。因此,角质层在控制水分流失、果实品质保持中起着至关重要的作用[17-18]

1.2.1 角质层厚度和结构形态在“延迟果实劣 变(Delayed fruit deterioration,dfd)”基因型番茄果实中,表面角质层堆积增多导致采后果实持水能力增强[19]。然而,大量研究表明,角质层厚度与果实透水性之间并无紧密关系[20-21]。Diarte等[22]在对不同品种橄榄的研究中发现,角质层厚度与透水性之间并无明显关系。进一步研究证实,果实角质层透水性与角质层结构形态关系更大。一般而言,角质层质地均匀、与表皮细胞连接紧密的果实,采后不易失水;相反,角质层结构松散的果实,采后容易失水且易导致果实表皮皱缩[23]。Schreiber等[24]指出,层状角质层的渗透系数比无定形角质层更低。角质层含水量从内表面向外表面递减。

1.2.2 角质层微裂纹 微裂缝是角质层上的微小裂缝,不穿过表皮和皮下细胞层。Bally[25]研究表明,芒果果实在接近成熟时,角质层开始出现裂纹,呈不规则板块状,表皮蜡质呈碎屑状竖起分布;随着果实进一步成熟,角质层板块不断分裂而增多,呈较规则的五边形。微裂纹的出现使得角质层丧失了屏障功能,而水分丧失又进一步加剧了微裂纹的形成[26]。此外,高湿度会加重苹果[27]和甜樱桃[28]果实微裂纹的形成,微裂纹不仅会造成水分损失,还是许多水果表皮病害发展的起因。

1.3 自然孔道对采后果实失水的影响

植物表面的自然孔道主要有气孔和皮孔两类,二者都是植物体与外界进行气体交换和水分蒸腾的通道。研究表明,‘Wellant’和‘Pinova’品种的苹果中通过皮孔蒸腾的水分分别占20% 和8%[29];‘乔纳金’苹果的水分流失中约有25% 通过微裂缝,25% 通过皮孔,50% 通过角质层表面[30]。Lufu等[31] 研究发现,在石榴果实中花萼末端果皮较薄,且含有皮孔数较多、较大,与此相对应,与赤道和茎末端区域相比,花萼末端更易受到水分损失的影响。在对苹果[29]和李[32]果实的研究中都清楚地表明果实水分渗透系数与皮孔密度和皮孔累积面积呈显著正相关。

虽然气孔主要存在于叶面,但部分果实表皮也存在气孔,如香蕉果实[33]。因此,气孔是除角质层外的另外一条水分蒸发途径。根据贮藏条件的不同,香蕉果皮上0%~50% 的气孔在采后仍保持开放状态[33]。另有研究表明,在香蕉成熟过程中水分通过气孔蒸腾和通过角质层蒸腾的程度几乎相等[34]

1.4 表皮毛状体对采后果实失水的影响

许多果实表面存在的毛状体可能也是水分流失的途径之一。研究发现,在成熟的桃果实中,毛状体在果实吸水方面的作用比角质层更重要,这极有可能是桃毛状体中多糖的比例高于角质层的缘故[35]。高萌等[36]研究表明,与‘徐香’品种猕猴桃相比,‘海沃德’品种猕猴桃失重率较低,推测可能是由于后者表皮毛短而细;随后,在对‘海沃德’和‘金福’2个品种猕猴桃的研究中也发现,‘金福’品种猕猴桃表皮毛更加短粗且稀疏,使得后者失重率显著低于前者[11]。同样在番茄中也发现,毛状体与果实水分蒸腾之间存在联系。在番茄果实毛状体下面存在穿过角质层的微孔道,从而为水分通过角质层提供了一个低阻力的通道,使得蒸腾作用更加迅速[21]

2 表皮组织化学成分对采后果实失水的影响

果实表皮组织成分中,角质层对水分的影响最重要。角质层主要由角质基质和蜡质组成,少量未取代脂肪酸、脂肪醛、二羧酸和伯醇是角质层中的次要成分[15, 37-38]。此外,酚类化合物、多糖和萜类化合物也在角质层中有发现。尽管蜡质含量次于角质,但仍被广泛认为是具有抗渗透屏障功能的主要表皮成分[20, 39]。因此,本部分重点围绕蜡质对采后果实失水的影响进行阐述。

2.1 蜡质对采后果实失水的影响

蜡质之所以能防止水分流失,与蜡层的疏水性和复杂的空间结构有关。同时,水分通过表皮由角质酯形成的极性通道框架时,蜡质作为填充物增加了水分扩散路径的长度和曲折性,也有助于减少组织内水分散失[40]

2.1.1 蜡质含量 目前关于果实表皮蜡质含量与其保水性之间的关系因果实种类或品种不同而存在不同结论。在柑橘类果实中,Yang等[41] 研究发现,红橘(Citrus reticulata)果实表皮蜡质含量较低、水分流失较快;相比之下,枳(Citrus reticulata)果实表皮蜡质含量较高、失水较慢。在对10个苹果品种中蜡质研究表明,‘红星’品种的果实蜡质含量低于其他品种,且贮藏期间失水率最高[42]。然而,在脐橙中发现蜡质含量与果实失水之间呈负相关[43],而在辣椒[44]和蓝莓[45] 中蜡质含量与果实失水之间似乎没有关系,其原因可能是蜡质成分和分布对表皮水分渗透性的影响要大于其含量的影响。

2.1.2 蜡质分布 果实表皮蜡质分为角质层内蜡和外蜡两部分[46]。内蜡嵌入到角质聚合物基质中,通常主要是相对较短链的无环组分(C16-C20)与环状化合物(如三萜、甾醇),形成疏水性较低的无定性区,并与表皮细胞壁上的多糖连接;外蜡则沉积在表皮细胞最外层,主要是超长链脂肪酸(VLCFAs)及其衍生物(如烷烃、脂肪酸、伯醇和醛),并可自我组装形成不能渗透的、不同形态的晶体结构[47-48]。虽然内蜡和外蜡均会影响水分扩散,但内蜡可能是主要影响因素[49-50]。例如,去除占野生型番茄果实上总蜡覆盖率的三分之一的表皮蜡层,仅对水分蒸发有轻微的影响,而降低囊内蜡50%,却导致水分渗透性增大4倍[50]。但是,角质层外蜡也有助于以一种特定的方式抵抗水分流失[50]

2.1.3 蜡质成分 (1) 脂肪酸及其衍生物。研究表明,角质层的阻隔性与超长链的无环脂肪酸衍生物分布有直接关系[48]。因为角质层中的疏水晶体屏障被认为是高度有序、紧密排列的非环化合物(如正构烷烃、脂肪酸、醇、醛和酯) [51],所以这些化合物与其他蜡质成分相比更能有效阻止表皮中水分运动[40],如‘温州密柑’和‘纽荷尔脐橙’果实贮藏期间的失重率与烷烃和醛类物质含量之间呈显著负相关[52]。在组成蜡质的成分中,烷烃是水果中最常见的,且其保水功效似乎更强。如番石榴果实中正构烷烃含量仅占总蜡质含量的3.4%,使得果实在采后呈现出高水分蒸腾速率[48]。此外,在无花果、橄榄和甜樱桃表皮的蜡层中含有丰富的脂肪酸和伯醇,但正构烷烃较少,相比较而言,脂肪酸和伯醇对蒸腾作用的屏障作用较弱[53]。Leide等[54] 研究发现,LeCER6功能丧失的番茄突变体表皮蜡质成分中超长链的正构烷烃含量降低,导致其水分损失是正常番茄的3~8倍。此外,Dimopoulos等[55] 在葡萄果实生长过程中也发现,水分缺失刺激了长链脂肪族化合物、尤其是烷基酯的增加。烷烃在控制西葫芦果实冷藏过程中的水分流失和冷害方面也起着重要作用[56]。值得注意的是,虽然烷烃在抵抗果实水分流失方面可能较为重要,但不能简单断定烷烃就是直接决定果实水分蒸发的主要因素。例如,橄榄果实角质层中总烷烃的绝对含量和相对含量均很低,但其角质层可以在逆境条件下极大地限制水分蒸腾[22]

与超长链脂肪酸衍生物对果实水分流失影响不同,短链脂肪酸及其衍生物则往往不利于水分保持。蜡质中丰富的C16-C18脂肪酸和伯醇被认为是导致玫瑰花瓣相对高通透性的因素之一[57],其原因可能是相对较短链的脂肪酸及其衍生物会削弱角质层中紧密包裹的不透水结晶区域,从而导致角质层的高透水性[48]。另外,脂肪酸和伯醇中的各种羟基、羧基可以增加亲水性,从而诱导较高的水分蒸腾速率[48]。此外,蜡质中的酮类尤其是蓝莓中的β-二酮同样对果实保水产生不利影响[17]

(2) 三萜类化合物。三萜类化合物主要位于角质层内蜡中[58]。由于三萜以及其他环状成分结晶度较低,导致果蜡中三萜类化合物含量高的果实保水性较差。如辣椒果实中,失水与蜡质中脂环化合物含量呈显著正相关,而与烷烃和脂肪族化合物的含量呈负相关[44]。在番石榴[48]、橄榄[53]、甜樱桃[59]、桃[60] 和蓝莓[61] 等果实中,三萜类化合物均是主要蜡质成分。但不同的三萜类化合物对失水的影响也不同。熊果酸和齐墩果酸是水果中普遍存在的三萜酸,研究发现熊果酸含量高的蓝莓品种失水率较高[45]。Oliveira等[62] 认为熊果酸增加了角质层的透水性,加速了果实采后贮藏过程中的软化和失重。相反,齐墩果酸具有维持果实角质层机械韧性、防止水分流失、保护果实免受生物和非生物胁迫等功能[63]。这一点在蓝莓果实中也得到证实,Yan等[17] 发现在蓝莓果实中,齐墩果酸的含量和比例与水分流失呈负相关,且熊果酸含量高于齐墩果酸含量的5蓝莓品种其失水率也明显较高。

2.2 角质对采后果实失水的影响

角质在基质层中作为骨架结构的重要成分,主要由C16和C18的羟基或环氧羟基脂肪酸单体通过共价键形成的聚酯化合物构成的三维网络结构。尽管角质含量占角质层的80%,但目前角质在角质层作为水分屏障中的相对贡献仍不清楚[37]。相比蜡质而言,角质含量显著减少对角质层蒸腾速率的影响微乎其微,因此一般认为采后果实中水分流失与角质之间的相关性并不显著。Kissinger等[64] 研究表明,辣椒采后失水率与细胞膜离子透性、脂氧合酶活性以及蜡质含量密切相关,而与角质总量、角质单体数量、角质单体组成无太大关系。同样,对控制角质成分生成的基因发生沉默或突变的番茄果实研究表明,角质含量与采后果实水分损失无相关性,而只有在角质减少并伴随蜡质覆盖减少的情况下,才能观察到表皮透水性显著增加[65-67]。值得注意的是,尽管角质本身似乎与失水之间无直接相关性,但由于不同物种角质单体组成存在差异,包括这些单体中存在不同数量的仲羟基和双键或醚键,以及彼此间交联度不同,都可能会影响角质的三维结构,并最终改变其与蜡质组分间的相互作用,进而影响水分的存在状态和渗透性,这可能是不同果实中蜡质对果实失水产生不同影响的原因所在[68]

2.3 多糖对采后果实失水的影响

角质层中除蜡质和角质外,还含有一定量的多糖[69]。这些多糖附着在果实表皮细胞的细胞壁上,与角质层聚合物中的羧基或羟基形成酯键或醚键,整合到角质层基质中[37, 70]。例如,在角质素- 木葡聚糖转移酶的催化下,角质素可以在表皮细胞壁与木葡聚糖中形成酯键[71]。在成熟的桃中,发现毛状体比角质层本身在吸水方面起着更重要的作用,推测其原因可能是桃的毛状体中多糖的比例高于角质层[35],而多糖有助于水分吸收。

2.4 酚类物质对采后果实失水的影响

角质层中的酚类物质虽然在番茄和桃果实中早有报道[68],但过去很少受到关注。近年来,在无花果、橄榄和苹果果实角质层中均发现酚类物质的存在[35, 53, 72],鉴定出的主要酚类化合物包括对香豆酸、对羟基苯甲酸、阿魏酸和柚皮素查尔酮等[20]。其中,肉桂酸衍生物、阿魏酸、咖啡酸可以酯化成角质层单体,并在角质层的组成和结构中发挥重要作用[72-73]。已有研究表明,这些角质层酚类物质缺乏会导致植物抗旱性降低[73],但角质层酚类物质与采后果实失水之间的关系尚未见报道。

3 控制果实表皮失水的分子机制研究

采后果实水分流失是由参与水分子运动的基因(如水通道蛋白 AQPs基因)和疏水屏障(角质层)生物合成基因协同调控的,这些基因是果实采前和采后处理中调控水分流失的关键靶点。其中,蜡质作为果实表皮组织中控制水分的主要成分,是目前表皮组织中研究最多的成分,其合成、转运同样受一系列基因的调控。

3.1 与采后果实失水相关的蜡质基因

近年来随着高通量测序技术的发展,已有多个基因被报道参与果实表面蜡质的合成。LeCER6编码KCS酶,对番茄 lecer6突变体的研究表明,该基因与番茄果实蜡质中C28及以上超长链脂肪酸的合成有关,在该突变体中,蜡质的减少使得突变体果实失水率大大增加[54]。在黄瓜中,研究发现CsCER1CsWAX2在其蜡质生物合成中起着关键作用,其中CsCER1过表达可增加超长链烷烃的含量、降低角质层的通透性和增加抗旱性[74]。在柑橘果实中,通过QTL定位和验证实验,证实QTL3中的CER1-1CER1-3基因参与果实蜡烷烃的积累,并揭示了蜡烷烃在限制柑橘果实水分流失中的潜在作用[41]。3- 酮酰基辅酶A合成酶(KCS)家族基因 CsKCS20在柑橘果实蜡质中也起着重要作用,CsKCS20主要负责催化C22和C24长链脂肪酸的生物合成[39]。荔枝果实中,随着果实失水率增加,蜡质在果皮表面的覆盖率增加,超长链脂肪酸、伯醇和正构烷烃的含量也发生显著变化。与此同时,参与这些化合物代谢的基因,包括与脂肪酸延伸相关的基因(如 LcLACS2LcKCS1LcKCR1LcHACDLcECR)、与正构烷烃形成相关的基因(如 LcCER1LcWAX2) 以及与伯醇形成相关的基因(如 LcCER4)均有所上调[75]。非特异性脂质转移蛋白(nsLTPs)是一类广泛存在的蛋白质,参与角质层蜡质和其他细胞壁前体的运输[76-77]Slltpg3基因是从番茄中分离出的nsLTPs家族成员,该基6因可通过增加果皮蜡质成分含量延缓果实软化脱水[78]

3.2 与采后果实失水相关的蜡质代谢调控

近年来,越来越多的基因被报道可在转录水平上调控蜡质的积累。许多转录因子(包括MYB、WRKY和AP2/ERF等)均参与了植物蜡质合成和转运的调控[79]。其中,部分与水分保持有关的蜡质基因也受到转录因子的调控。Zhang等[80] 从苹果中鉴定出一个新的MYB家族成员 MdMYB30,其与 MdKCS1基因启动子结合,激活了 MdKCS1基因转录表达,导致角质层中蜡质积累。研究发现,其他MYB家族成员(如MYB16/96/106)可调控梨果实表皮蜡生物合成[81-82]。在柑橘果实中,CsMYB96可直接与蜡质相关基因(如 CER1启动子)中的顺式作用元件结合激活其表达,同时抑制质膜内在蛋白的转录,共同减少果实表皮的水分损失[83];同时,上述CsKCS20基因也受到该转录因子的调控[39]。在苹果中,McWRI1激活了 McKCSMcLACMcWAX基因的启动子,上调其表达水平,导致烷烃积累和果实表面蜡质结构的改变[84]。乙烯反应因子2(Ethylene response factors 2,ERF2)属于AP2/ERF转录因子家族,在乙烯信号转导中起关键作用。在苹果果实中,MdERF2过表达上调了蜡质相关合成基因MdLACS2MdWSD1MdCER4MdCER6的表达水平,提高了烷烃和醇的产量。Sun等[85] 研究发现,不同MdERF2表达水平改变了苹果表皮蜡质的表观结构,表明乙烯在转录水平上通过MdERF2调控苹果表皮蜡的合成,从而改变了蜡的结构和组成,这些变化必然影响果实的保水性。

除转录调控外,转录后和翻译后水平的调控在植物蜡的生物合成和运输中也起着重要作用。然而,目前这方面的研究主要局限于拟南芥等模式植物[86],关于果皮蜡质在果实的转录和翻译后调控的研究尚未见报道。因此,这些领域在采后果蔬中需要进一步研究。

4 结语与展望

水分对于采后果实品质保持至关重要,水分的减少会促进果实品质下降、更易遭受病原菌侵染,最终导致果实贮藏期缩短。表皮组织作为果实的外层保护组织,是控制果实水分流失的重要屏障。表皮组织结构包括表皮细胞、角质层、自然孔道以及附属物(如毛状体)均对水分保持产生影响,且这些结构的化学组成尤其是角质层中的蜡质更是直接决定了表皮水分的透性,使得角质层成为果实采后保水能力的决定因素之一。同时,控制果实表皮失水的分子机制研究也逐步引起重视,尤其是针对蜡质合成转运的分子机制研究。

尽管果实表皮组织与果实采后品质关系研究近年来正逐步成为研究热点,但目前仍然存在的一些问题:(1)研究的关注点还比较狭窄。表皮组织包括表皮细胞、角质层、自然孔道和表皮附属物等部分,但是目前大量的研究均集中在角质层上,对角质层的研究又集中在蜡质上,对蜡质的研究又比较集中在长链脂肪酸及其衍生物以及三萜类化合物上。尽管角质层是控制水分流失的重要屏障,但一些研究已经表明,其他组成成分(如自然孔道、毛状体)同样对水分的流失产生影响,这些因素尚需要更多的证据支撑。(2) 研究涉及的果实类型还较少。从目前来看,采后果实中主要集中在苹果、柑橘类水果、部分浆果类水果(葡萄、猕猴桃和蓝莓等)、桃和番茄等。目前研究已指出,不同种类果实甚至同一种类不同品种的果实表皮组织都存在差异,并且果实表皮组织还受到温度、湿度等环境因素的影响。因此,需要对更多种类果实在不同环境中的表皮组织开展研究。(3)多项研究结果之间仍存在矛盾。目前角质、蜡质的量与水分流失之间的关系、蜡质分布区域不同对果实失水的影响等,在不同果实中还存在争议,需要进一步明确。(4)在表皮组织调控水分的生物学机制方面,采后果实中的研究还较有限,且仅在转录水平上有少量研究。表皮组织作为果实与周围环境的分界,其结构组成对采后果实品质保持起着决定性作用。因此,对表皮组织进行更有广度和深度的研究,将对揭示采后果实品质劣变机制提供新的视野,并为开发新的保鲜技术提供思路。

参考文献(References):
[1]
DÍAZ-PÉREZ J C. Chapter 8-Transpiration //YAHIA E M. Postharvest physiology and biochemistry of fruits and vegetables[M]. Cambridge: Woodhead Publishing, 2019: 157-173. DOI: 10.1016/B978-0-12-813278-4.00008-7.
[2]
BRUMMELL D A, BOWEN J K, GAPPER N E. Biotechnological approaches for controlling postharvest fruit softening[J]. Current Opinion in Biotechnology, 2022, 78: 102786. DOI:10.1016/j.copbio.2022.102786
[3]
HAMIE N, ZOFFOLI J P, TARRICONE L, VERRASTRO V, PREZ-DONOSO A G, GAMBACORTA G. Rachis browning and water loss description during postharvest storage of 'Krissy' and ' Thomp son Seed less' table grapes[J]. Postharvest Biology and Technology, 2022, 18: 4. DOI:10.1016/j.postharvbio.2021.111758
[4]
LIU B, XUE W W, GUO Z L, ZHU Q N, PANG X Q, ZHANG Z Q, FANG F. Water loss and pericarp browning of litchi (Litchi chinensis) and longan (Dimocarpus longan) fruit maintain seed vigor[J]. Scientia Horticulturae, 2021, 290: 110519. DOI:10.1016/j.scienta.2021.110519
[5]
方方, 马娜璇, 张雪莲, 庞学群, 张昭其. 聚丙烯酰胺树脂处理对荔枝低温贮藏期间果皮褐变和病害的影响[J]. 广东农业科学, 2020, 47(7): 148-154. DOI:10.16768/j.issn.1004-874X.2020.07.019
FANG F, MA N X, ZHANG X L, PANG X Q, ZHANG Z Q. Effects of polyacrylamide resin on pericarp browning and diseases of litchi fruits during low temperature storage[J]. Guangdong Agricultural Sciences, 2020, 47(7): 148-154. DOI:10.16768/j.issn.1004-874X.2020.07.019
[6]
LUFU R, AMBAW A, OPARA U L. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors[J]. Scientia Horticulturae, 2020, 272: 109519.
[7]
REITZ N F, MITCHAM E J. A novel system for rapidly predicting produce water loss and measuring respiration rate[J]. Computers and Electronics in Agriculture, 2023, 210: 107873. DOI:10.1016/j.compag.2023.107873
[8]
MOGGIA C, BEAUDRY R M, RETAMALES J B, LOBOS G A. Variation in the impact of stem scar and cuticle on water loss in highbush blueberry fruit argue for the use of water permeance as a selection criterion in breeding[J]. Postharvest Biology and Technology, 2017, 132: 88-96. DOI:10.1016/j.postharvbio.2017.05.019
[9]
潘永贵, 谢江辉. 现代果蔬采后生理[M]. 北京: 化学工业出版社, 2009.
PAN Y G, XIE J H. Modern postharvest physiology of fruits and vegetables[M]. Beijing: Chemical Industry Press, 2009.
[10]
刘国成, 马怀宇, 吕德国, 秦嗣军, 杜国栋, 王 浩'. 寒富'苹果贮藏期果实解剖结构及品质变化研究[J]. 北方园艺, 2012(15): 1-4.
LIU G C, MA H Y, LYU D G, QIN S J, DU G D, WANG H. Research on the change of 'Hanfu' apple fruit anatomic structure and quality during storage[J]. Northern Horticulture, 2012(15): 1-4.
[11]
田爱林. 猕猴桃新优系'金福'采后生理、质地及组织结构特性的分析[D]. 杨凌: 西北农林科技大学, 2022. DOI: 10.27409/d.cnki.gxbnu.2021.000474.
TIAN A L. Analysis of physiology, texture and tissue structure characteristics of the new variety 'Jinfu' kiwifruit after harvest[D]. Yangling: Northwest A & F University, 2022. DOI: 10.27409/d.cnki.gxbnu.2021.000474.
[12]
曹雪, 郝秀秀, 曹振, 戴圣杰, 陈苏丹, 李广阅. 低温贮藏对'汉蒙号'番茄果实品质、色素含量和果皮显微结构的影响[J]. 北方园艺, 2020(1): 96-103. DOI:10.11937/bfyy.20192161
CAO X, HAO X X, CAO Z, DAI S J, CHEN S D, LI G Y. Effects of low temperature storage on the quality, pigment content and pericarp microstructure of tomato fruit 'Hanmeng No.7'[J]. Northern Horticulture, 2020(1): 96-103. DOI:10.11937/bfyy.20192161
[13]
LI X Y, PEI Z F, MENG L H, JIANG Y, LIU H M, PAN Y G. Investigation on epidermal structure and water migration of postharvest passion fruit during storage[J]. Journal of Food Science, 2023, 88: 4046-4058. DOI:10.1111/1750-3841.16732
[14]
郭靖, 陈于陇, 王萍, 王玲, 陈飞平, 罗政, 殷娟, 于新. 不同成熟度百香果的贮藏特性研究[J]. 广东农业科学, 2020, 47(2): 133-140. DOI:10.16768/j.issn.1004-874X.2020.02.018
GUO J, CHEN Y L, WANG P, WANG L, CHEN F P, LUO Z, YIN J, YU X. Study on storage characteristics of passion fruits in different maturities[J]. Guangdong Agricultural Sciences, 2020, 47(2): 133-140. DOI:10.16768/j.issn.1004-874X.2020.02.018
[15]
FERNANDEZ V, BAHAMONDE H A, JAVIER PEGUERO-PINA J, GIL-PELGRíN E, SANCHO-KNAPIK D, GIL L, GOLDBACH H E, EICHERT T. Physico-chemical properties of plant cuticles and their functional and ecological significance[J]. Journal of Experimental Botany, 2017, 68(19): 5293-5306. DOI:10.1093/jxb/erx302
[16]
MARKUS R. Water loss from litchi (Litchi chinensis) and longan (Dimocarpus longan) fruits is biphasic and controlled by a complex pericarpal transpiration barrier[J]. Planta, 2015, 242: 1207. DOI:10.1007/s00425-015-2360-y
[17]
YAN Y, CASTELLARIN S D. Blueberry water loss is related to both cuticular wax composition and stem scar size[J]. Postharvest Biology and Technology, 2022, 188: 111907. DOI:10.1016/j.postharvbio.2022.111907
[18]
LARA I, BELGE B, GOULAO L F. The fruit cuticle as a modulator of postharvest quality[J]. Postharvest Biology and Technology, 2014, 87: 103-112. DOI:10.1016/j.postharvbio.2013.08.012
[19]
ROMERO P, ROSE J K C. A relationship between tomato fruit softening, cuticle properties and water availability[J]. Food Chemistry, 2019, 295: 300-310. DOI:10.1016/j.foodchem.2019.05.118
[20]
LARA I, HEREDIA A, DOMINGUEZ E. Shelf life potential and the fruit cuticle: the unexpected player[J]. Frontiers in Plant Science, 2019, 10: 770. DOI:10.3389/fpls.2019.00770
[21]
FICH E A, FISHER J, ZAMIR D, ROSE J K C. Transpiration from tomato fruit occurs primarily via trichome-associated transcuticular polar pores[J]. Plant Physiol, 2020, 184(4): 1840-1852. DOI:10.1104/pp.20.01105
[22]
DIARTE C, LAI P H, HUANG H, ROMERO A, CASERO T, GATIUS F, GRAELL J, MEDINA V, EAST A, RIEDERER M, LARA I. Insights into olive fruit surface functions: A comparison of cuticular composition, water permeability, and surface topography in nine cultivars during maturation[J]. Frontiers in Plant Science, 2019, 10: 1484. DOI:10.3389/fpls.2019.01484
[23]
邓继光, 刘国成, 李进辉, 殷广春. 苹果品种果实组织结构研究[J]. 果树科学, 1995, 12(2): 71-74. DOI:10.13925/j.cnki.gsxb.1995.02.001
DENG J G, LIU G C, LI J H, YIN G C. Investigation on the organization structure of apple ftuits[J]. Journal of Fruit Scinece, 1995, 12(2): 71-74. DOI:10.13925/j.cnki.gsxb.1995.02.001
[24]
SCHREIBER L, SCHNHERR J. Water and solute permeability of plant cuticles[M]. Berlin: Springer Berlin Heidelberg, 2009.
[25]
BALLY I S E. Changes in the cuticular surface during the development of mango (Mangifera indica L.) cv. Kensington Pride[J]. Scientia Horticulturae, 1999, 79(1): 13-22. DOI:10.1016/S0304-4238(98)00159-9
[26]
KHANAL B P, IMORO Y, CHEN Y H, STRAUBE J, KNOCHE M. Surface moisture increases microcracking and water vapour permeance of apple fruit skin[J]. Plant Biology, 2021, 23: 74-82. DOI:10.1111/plb.13178
[27]
KNOCHE M, KHANAL B P, STOPAR M. Russeting and microcracking of 'golden delicious' apple fruit concomitantly decline due to gibberellin A4+7 application[J]. Journal of the American Society for Horticultural Science, 2011, 136: 159-164. DOI:10.21273/JASHS.136.3.159
[28]
KNOCHE M, PESCHEL S. Water on the surface aggravates microscopic cracking of the sweet cherry fruit cuticle[J]. Journal of the American Society for Horticultural Science, 2006, 131: 192-200. DOI:10.1007/s10658-005-0233-0
[29]
KHANAL B P, SI Y, KNOCHE M. Lenticels and apple fruit transpiration[J]. Postharvest Biology and Technology, 2020, 167: 111221. DOI:10.1016/j.postharvbio.2020.111221
[30]
VERAVERBEKE E A, VERBOVEN P, VAN OOSTVELDT P, NICOLAı̈B M. Prediction of moisture loss across the cuticle of apple 〔Malus sylvestris subsp. mitis (Wallr.)〕 during storage: Part 2. Model simulations and practical applications[J]. Postharvest Biology and Technology, 2003, 30: 89-97. DOI:10.1016/S0925-5214(03)00082-6
[31]
LUFU R, AMBAW A, OPARA U L. Functional characterisation of lenticels, micro-cracks, wax patterns, peel tissue fractions and water loss of pomegranate fruit (cv. Wonderful) during storage[J]. Postharvest Biology and Technology, 2021, 178: 111539. DOI:10.1016/j.postharvbio.2021.111539
[32]
KRITZINGER I, LOTZE E. Quantification of lenticels in Japanese plum cultivars and their effect on total fruit peel permeance[J]. Scientia Horticulturae, 2019, 254: 35-39. DOI:10.1016/j.scienta.2019.04.082
[33]
BRAT P, LECHAUDEL M, HUBERT O, MORILLON R, HUBERT O, GROS O, LAMBERT F, BENOIT S, BUGAUD C, SALMON F. Post-harvest banana peel splitting as a function of relative humidity storage conditions[J]. Acta Physiologiae Plantarumt, 2016, 38(10): 1-14. DOI:10.1007/s11738-016-2253-0
[34]
KHANAL B P, SANGROULA B, BHATTARAI A, ALMEIDA G K, KNOCHE M. Pathways of postharvest water loss from banana fruit[J]. Postharvest Biology and Technology, 2022, 191: 111979. DOI:10.1016/j.postharvbio.2022.111979
[35]
FERNANDEZ V, KHAYET M, MONTERO-PRADO P, HEREDIA-GUERRERO J A, LIAKOPOULOS G, KARABOURNIOTIS G, DEL R ÍO V, DOMÍNGUEZ E, TACCHINI I, NERÍN C, VAL J, HEREDIA A. New insights into the properties of pubescent surfaces: peach fruit as a model[J]. Plant Physiology, 2011, 156(4): 2098-2108. DOI:10.1104/pp.111.176305
[36]
高萌, 屈魏, 冉昪, 饶景萍. '徐香'与'海沃德'猕猴桃冷藏期间组织结构与生理变化差异[J]. 园艺学报, 2020, 47(7): 1289-1300. DOI:10.16420/j.issn.0513-353x.2019-0886
GAO M, QU W, RAN S, RAO J P. Differences in tissue structure and physiological changes of 'Xuxiang' and 'Hayward' kiwifruit fruits during cold storage[J]. Acta Horticulturae Sinica, 2020, 47(7): 1289-1300. DOI:10.16420/j.issn.0513-353x.2019-0886
[37]
FICH E A, SEGERSON N A, ROSE J K C. The plant polyester cutin: biosynthesis, structure, and biological roles[J]. Annual Review of Plant Biology, 2016, 67(1): 207. DOI:10.1146/annurev-arplant-043015-111929
[38]
LIU G S, LI H L, PENG Z Z, LIU R L, HAN Y C, WANG Y X, ZHAO X D, FU D Q. Composition, metabolism and postharvest function and regulation of fruit cuticle: A review[J]. Food Chemistry, 2023, 411: 135449. DOI:10.1016/j.foodchem.2023.135449
[39]
WANG Y, YANG X, CHEN Z, ZHANG J, SI K, XU R, HE Y, ZHU F, CHENG Y. Function and transcriptional regulation of CsKCS20 in the elongation of very-long-chain fatty acids and wax biosynthesis in Citrus sinensis flavedo[J]. Horticulture Research, 2022, 9: uhab027. DOI:10.1093/hr/uhab027
[40]
BAUR P, MARZOUK H, SCH NHERR J. Estimation of path lengths for diffusion of organic compounds through leaf cuticles[J]. Plant Cell & Environment, 2002, 22(3): 291-299. DOI:10.1046/j.1365-3040.1999.00429.x
[41]
YANG H, ZOU Y, LI X, Li X, XU R, ZHU F, XU J, DENG X, CHENG Y. QTL analysis reveals the effect of CER1-1 and CER1-3 to reduce fruit water loss by increasing cuticular wax alkanes in citrus fruit[J]. Postharvest Biology and Technology, 2022, 185: 111771. DOI:10.1016/j.postharvbio.2021.111771
[42]
柴奕丰. 苹果贮藏期间表皮蜡质变化对生理品质的影响[D]. 沈阳: 沈阳农业大学, 2020.
CHAI Y F. Effects of cuticular wax changes on physiological quality of apple during storage[D]. Shenyang: Shenyang Agricultural University, 2020.
[43]
WANG J, SUN L, XIE L, HE Y, LUO T, SHENG L, LUO Y, ZENG Y, XU J, DENG X, CHENG Y. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling[J]. Plant Science, 2016, 243: 131-144. DOI:10.1016/j.plantsci.2015.12.010
[44]
PARSONS E P, POPOPVSKY S, LOHREY G T, LU S, ALKALAI-TUVIA S, PERZELAN Y, PARAN I, FALLIK E, JENKS M A. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)[J]. Physiology Plant, 2012, 146(1): 15-25. DOI:10.1111/j.1399-3054.2012.01592.x
[45]
MOGGIA C, GRAELL J, LARA I, SCHMEDA-HIRSCHMANN G, THOMAS-VALDÉS S, LOBOS G A. Fruit characteristics and cuticle triterpenes as related to postharvest quality of highbush blueberries[J]. Scientia Horticulturae, 2016, 211: 449-457. DOI:10.1016/j.scienta.2016.09.018
[46]
HOLLOWAY P J, JEFFREE C E. Epicuticular Waxes[C]// HOMAS B, MURRAY B G, MURPHY D J. Encyclopedia of applied plant sciences[M]. Second edition. Oxford: Academic Press, 2017: 374-386. DOI: 10.1016/B978-0-12-394807-6.00075-7.
[47]
杨宏宾. 柑橘果面蜡质合成关键基因挖掘及重要采后性状的QTL定位[D]. 武汉: 华中农业大学, 2023.
YANG H B. The mining of key genes involved in cuticular wax synthesis and QTL mapping of the important postharvest traits in citrus fruit[D]. Wuhan: Huazhong Agricultural University, 2023.
[48]
HUANG H, LIAN Q, WANG L, SHAN Y, LI F, CHANG S K, JIANG Y. Chemical composition of the cuticular membrane in guava fruit (Psidium guajava L.) affects barrier property to transpiration[J]. Plant Physiology and Biochemistry, 2020, 155: 589-595. DOI:10.1016/j.plaphy.2020.08.023
[49]
RIOS J C, ROBLEDO F, SCHREIBER L, ZEISLER V, LANG E, CARRASCO B, SILVA H. Association between the concentration of n-alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits[J]. Scientia Horticulturae, 2015, 197: 57-65. DOI:10.1016/j.scienta.2015.10.037
[50]
BUENO A, SANCHO-KNAPIK D, GIL-PELEGRIN E, LEIDE J, PEGUERO-PINA J J, BURGHARDT M, RIEDERER M. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: Does the environment matter?[J]. Tree Physiology, 2019, 40: 827-840. DOI:10.1093/treephys/tpz0110
[51]
BARTHLOTT W, MAIL M, BHUSHAN B, KOCH K. Plant surfaces: structures and functions for biomimetic innovations[J]. Nano-micro Letters, 2017, 9(2): 23. DOI:10.1007/s40820-016-0125-1
[52]
WANG J, HAO H, LIU R, MA Q, XU J, CHEN F, CHENG Y, DENG X. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression[J]. Food Chemistry, 2014, 153: 177-185. DOI:10.1016/j.foodchem.2013.12.021
[53]
HUANG H, BURGHARDT M, SCHUSTER A C, LEIDE J, LARA I, RIEDERER M. Chemical composition and water permeability of fruit and leaf cuticles of Olea europaea L.[J]. Journal of Agricultural and Food Chemistry, 2017, 65(40): 8790-8797. DOI:10.1021/acs.jafc.7b03049
[54]
LEIDE J, HILDEBRANDT U, REUSSING K, RIEDERER M, VOGG G. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: Effects of a deficiency in a beta-ketoacyl-coenzyme a synthase (LeCER6)[J]. Plant Physiology, 2007, 144(3): 1667-1679. DOI:10.1104/pp.107.099481
[55]
DIMOPOULOS N, TINDJAU R, WONG D C J, MATZAT T, HASLAM T, SONG C, GAMBETTA G A, KUNST L, CASTELLARIN S D. Drought stress modulates cuticular wax composition of the grape berry[J]. Journal of Experimental Botany, 2020, 71: 3126-3141. DOI:10.1093/jxb/eraa046
[56]
CARVAJAL F, CASTRO-CEGR A, JIM NEZ-MU OZ R, JAMILENA M, GARRIDO D, PALMA F. Changes in morphology, metabolism and composition of cuticular wax in zucchini fruit during postharvest cold storage[J]. Frontiers in Plant Science, 2021, 12: 778745. DOI:10.3389/fpls.2021.778745
[57]
CHENG G, HUANG H, ZHOU L, HE S, ZHANG Y, CHENG X A. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation[J]. Plant Physiology and Biochemistry, 2019, 135: 404-410. DOI:10.1016/j.plaphy.2019.01.006
[58]
JETTER R, RIEDERER M. Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components[J]. Plant Physiology, 2016, 170(2): 921-934. DOI:10.1104/pp.15.01699
[59]
BELGE B, LLOVERA M, COMABELLA E, GATIUS F, GUILLEN P, GRAELL J, LARA I. Characterization of cuticle composition after cold storage of 'Celeste' and 'Somerset' sweet cherry fruit[J]. Journal of Agricultural and Food Chemistry, 2014, 62(34): 8722-8729. DOI:10.1021/jf502650t
[60]
BELGE B, LLOVERA M, COMABELLA E, GRAELL J, LARA I. Fruit cuticle composition of a melting and a nonmelting peach cultivar[J]. Journal of Agricultural and Food Chemistry, 2014, 62(15): 3488-3495. DOI:10.1021/jf5003528
[61]
CHU W, GAO H, CHEN H, FANG X, ZHENG Y. Effects of cuticular wax on the postharvest quality of blueberry fruit[J]. Food Chemistry, 2018, 239: 68-74. DOI:10.1016/j.foodchem.2017.06.024
[62]
OLIVEIRA A F, MEIRELLES S T, SALATINO A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss[J]. Anais Da Academia Brasileira De Ciencias, 2003, 75(4): 431-439. DOI:10.1590/s0001-37652003000400003
[63]
PENSEC F, PĄCZKOWSKI C, GRABARCZYK M, WOŹNIAK A, BÉNARD-GELLON M, BERTSCH C, CHONG J, SZAKIEL A. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the Upper Rhine Valley[J]. Journal of Agricultural and Food Chemistry, 2014, 62(32): 7998-8007. DOI:10.1021/jf502033s
[64]
KISSINGER M, TUVIA-ALKALAI S, SHALOM Y, FALLIK E, ELKIND Y, JENKS M A, GOODWIN M S. Characterization of physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage[J]. Journal of the American Society for Horticultural Science, 2005, 130(5): 735-741. DOI:10.21273/jashs.130.5.735
[65]
GIRARD A L, MOUNET F, LEMAIRE-CHAMLEY M, ELMORJANI K, VIVANCOS J, RUNAVOT J L, QUEMENER B, PETIT J, GERMAIN V, ROTHAN C, MARION D, BAKAN B. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. The Plant Cell, 2012, 24(7): 3119-3134. DOI:10.1105/tpc.112.101055
[66]
SHI J X, ADATO A, ALKAN N, HE Y, LASHBROOKE J, MATAS A J, MEIR S, MALITSKY S, ISAACSON T, PRUSKY D, LESHKOWITZ D, SCHREIBER L, GRANELL A R, WIDEMANN E, GRAUSEM B, PINOT F, ROSE J KC, ROGACHEV I, ROTHAN C, AHARONI A. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning[J]. New Phytology, 2013, 197(2): 468-480. DOI:10.1111/nph.12032
[67]
ISAACSON T, KOSMA D K, MATAS A J, BUDA G J, ROSE J K C. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss[J]. Plant Journal, 2009, 60(2): 363-377. DOI:10.1111/j.1365-313X.2009.03969.x
[68]
FERNÁNDEZ-MUÑOZ R, HEREDIA A, DOMÍNGUEZ E. The role of cuticle in fruit shelf-life[J]. Current Opinion in Biotechnology, 2022, 78: 102802. DOI:10.1016/j.copbio.2022.102802
[69]
BHANOT V, FADANAVIS S V, PANWAR J. Revisiting the architecture, biosynthesis and functional aspects of the plant cuticle: There is more scope[J]. Environmental and Experimental Botany, 2021, 183: 104364. DOI:10.1016/j.envexpbot.2020.104364
[70]
YEATS T H, ROSE J K. The formation and function of plant cuticles[J]. Plant Physiology, 2013, 163(1): 5-20. DOI:10.1104/pp.113.222737
[71]
XIN A, FEI Y, MOLNAR A, FRY S C. Cutin: Cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis[J]. Biochemical Journal, 2021, 478(4): 777-798. DOI:10.1042/BCJ20200835
[72]
LEIDE J, XAVIER DE SOUZA A, PAPP I, RIEDERER M. Specific characteristics of the apple fruit cuticle: Investigation of early and late season cultivars 'Prima' and 'Florina' (Malus domestica Borkh.)[J]. Scientia Horticulturae, 2018, 229: 137-147. DOI:10.1016/j.scienta.2017.10.042
[73]
LIU L L, DENG Y Q, DONG X X, WANG C F, YUAN F, HAN G L, WANG B S. ALDH2C4 regulates cuticle thickness and reduces water loss to promote drought tolerance[J]. Plant Science, 2022, 323: 111405. DOI:10.1016/j.plantsci.2022.111405
[74]
WANG W, ZHANG Y, XU C, REN J, LIU X, BLACK K, GAI X, WANG Q, REN H. Cucumber ECERIFERUM1 (CsCER1), which influences the cuticle properties and drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis[J]. Plant Molecular Biology, 2015, 87(3): 219-233. DOI:10.1007/s11103-014-0271-0
[75]
HUANG H, LIU H, WANG L, XIANG X. Cuticular wax metabolism responses to atmospheric water stress on the exocarp surface of litchi fruit after harvest[J]. Food Chemistry, 2023, 414: 135704. DOI:10.1016/j.foodchem.2023.135704
[76]
CARVALHO A D O, GOMES V M. Role of plant lipid transfer proteins in plant cell physiology—A concise review[J]. Peptides, 2007, 28(5): 1144-1153. DOI:10.1016/j.peptides.2007.03.004
[77]
LIU F, ZHANG X, LU C, XIANG X. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis[J]. Journal of Experimental Botany, 2015, 66(19): 5663-5681. DOI:10.1093/jxb/erv313
[78]
WANG Y, HE Y, ZHANG M, LI J, XU X, SHI X, MENG L. Slltpg3, a non-specific lipid transfer protein, acts on the cuticle synthetic pathway to delay water loss and softening of tomato fruit[J]. Postharvest Biolog y and Technolog y, 2022, 188: 111899. DOI:10.1016/j.postharvbio.2022.111899
[79]
WU W, JIANG B, LIU R, HAN Y, FANG X, MU H, FARAG M A, SIMAL-GANDARA J, PRIETO M A, CHEN H, XIAO J, GAO H. Structures and functions of cuticular wax in postharvest fruit and its regulation: A comprehensive review with future perspectives[J]. Engineering, 2023, 23: 118-129. DOI:10.1016/j.eng.2022.12.006
[80]
ZHANG Y L, ZHANG C L, WANG G L, WANG Y X, QI C H, ZHAO Q, YOU C X, LI Y Y, HAO Y J. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis[J]. BMC Plant Biology, 2019, 19: 362. DOI:10.1186/s12870-019-1918-4
[81]
WU X, YIN H, CHEN Y, LI L, WANG Y, HAO P, CAO P, QI K, ZHANG S. Chemical composition, crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage[J]. Postharvest Biology and Technology, 2017, 132: 71-80. DOI:10.1016/j.postharvbio.2017.05.007
[82]
WU X, CHEN Y, SHI X, QI K, CAO P, LIU X, YIN H, ZHANG S. Effects of palmitic acid (16:0), hexacosanoic acid (26:0), ethephon and methyl jasmonate on the cuticular wax composition, structure and expression of key gene in the fruits of three pear cultivars[J]. Functional Plant Biology, 2020, 47: 156-169. DOI:10.1071/FP19117
[83]
ZHANG M, WANG J, LIU R, LIU H, YANG H, ZHU Z, XU R, WANG P, DENG X, XUE S, ZHU F, CHENG Y. CsMYB96 confers resistance to water loss in citrus fruit by simultaneous regulation of water transport and wax biosynthesis[J]. Journal of Experimental Botany, 2022, 73(3): 953-966. DOI:10.1093/jxb/erab420
[84]
HAO S, MA Y, ZHAO S, JI Q, ZHANG K, YANG M, YAO Y. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature[J]. PLoS ONE, 2017, 12: e0186996. DOI:10.1371/journal.pone.0186996
[85]
SUN Y, ZHANG X, JIANG Y, JIHAN W, BINGRU L, XINHUA Z, XIAOAN L, FUJUN L. Roles of ERF2 in apple fruit cuticular wax synthesis[J]. Scientia Horticulturae, 2022, 301: 111144. DOI:10.1016/j.scienta.2022.111144
[86]
LEE S B, SUH M C. Regulatory mechanisms underlying cuticular waxbiosynthesis[J]. Journal of Experimental Botany, 2022, 73(9): 2799-2816. DOI:10.1093/jxb/erab509

(责任编辑     张辉玲)