广东农业科学  2023, Vol. 50 Issue (12): 29-42   DOI: 10.16768/j.issn.1004-874X.2023.12.003.
0

文章信息

引用本文
陈思蓉, 李晨, 孙炳蕊. 水稻耐盐分子机制研究进展[J]. 广东农业科学, 2023, 50(12): 29-42.   DOI: 10.16768/j.issn.1004-874X.2023.12.003
CHEN Sirong, LI Chen, SUN Bingrui. Research Progress on Molecular Mechanism of Salt Tolerance in Rice[J]. Guangdong Agricultural Sciences, 2023, 50(12): 29-42.   DOI: 10.16768/j.issn.1004-874X.2023.12.003

基金项目

广东省自然科学基金(2021A1515011226); 广东省农业科学院水稻研究所“优谷计划”(所长基金)(2021YG02); 广东省财政厅提升广东省稻种资源考察与保护精深鉴评与创新利用产业科技能力水平项目(粤财农〔2023〕145号); 广东省水稻育种新技术重点实验室项目(2023B1212060042)

作者简介

陈思蓉(1998—),女,硕士,研究实习员,研究方向为水稻种子活力,E-mail:1012961384@qq.com.

通讯作者

孙炳蕊(1980—),女,博士,副研究员,研究方向为作物遗传育种,E-mail:sunbingrui2003@163.com.

文章历史

收稿日期:2023-10-30
水稻耐盐分子机制研究进展
陈思蓉 , 李晨 , 孙炳蕊     
广东省农业科学院水稻研究所/农业农村部华南优质稻遗传育种实验室(部省共建)/广东省水稻育种新技术重点实验室/广东省水稻工程实验室,广东 广州 510640
摘要:水稻是世界上重要的粮食作物之一,对盐胁迫比较敏感,土壤盐碱化对水稻的安全生产造成潜在风险。盐胁迫会引起水稻的渗透胁迫和离子毒害,还会在植株中引起氧化胁迫,导致水稻品质和产量下降。由于水稻根系能吸收盐分分泌有机酸,同时具有田间持水和排水晒田的生长特性,因此水稻也是一种改良盐渍土的优良作物。因此培育耐盐水稻新品种,提高水稻耐盐性,可有效提高盐渍化耕地的生产潜力,对保障我国乃至全球粮食安全具有重要意义。近年来,数量遗传学和分子标记技术不断发展,通过遗传、生化及分子生物学等手段,挖掘出大量耐盐相关QTL和基因,对于解析水稻耐盐分子机制,利用分子标记辅助选择、基因编辑等提高耐盐水稻育种效率,均具有非常重要的意义。但目前克隆的耐盐相关基因大多采用反向遗传学方法获得,且大多是在过表达条件下表现出耐盐性,或者耐盐基因为隐性,难以在耐盐水稻育种中应用。总结近年来水稻耐盐相关基因的鉴定和挖掘研究中所取得的进展,从有机物渗透调节、离子吸收转运调节、抗氧化系统清除活性氧调节、激素调节4个方面综述水稻耐盐分子机制的研究进展,并探讨未来水稻耐盐性研究面临的挑战,为开展水稻耐盐分子育种提供建议。
关键词水稻    盐胁迫    耐盐性    QTL    耐盐基因    分子机制    
Research Progress on Molecular Mechanism of Salt Tolerance in Rice
CHEN Sirong , LI Chen , SUN Bingrui     
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
Abstract: Rice is one of the important grain crops in the world and is sensitive to salt stress. The increasingly serious salinization of paddy soils is becoming a potential risk to the safe production of rice. Salt stress can cause osmotic stress, ion toxicity and oxidative stress in rice plant, ultimately leading to a decrease in rice quality and yield. Due to the ability of rice roots to absorb salt and secrete organic acids as well as the growth characteristics of water holding in the early stage and drainage in rice paddies in the later stage, rice is also an excellent crop for improving saline soil. Therefore, cultivating new rice varieties of salt tolerant and improving rice salt tolerance can effectively enhance the production potential of saline farmland, which is important to food security in China and the world. In recent years, quantitative genetics and molecular marker technology have been continuously developed. Through genetic, biochemical and molecular biology methods, a large number of salt-tolerant related QTLs and genes have been excavated, which is of great benefit to analyze the molecular mechanism of salt tolerance in rice and improve the breeding efficiency of salt-tolerant rice through molecular marker-assisted selection, gene editing and other molecular means. Nevertheless, many cloned genes related to salt tolerance are difficult to be applied in rice breeding currently as most of them are obtained through reverse genetics methods and exhibit salt tolerance only under overexpression conditions, or these genes are recessive genes. The study summarized the recent progress in the identification and mining of salt-tolerant genes in rice, and reviewed the research progress on molecular mechanisms of salt tolerance in rice from four aspects: osmotic regulation of organic matter, regulation of ion absorption and transport, regulation of reactive oxygen removal by antioxidant system and regulation of hormone. The challenges of future researches on salt tolerance of rice were also discussed in order to provide some suggestions for molecular breeding of salt tolerance of rice in the future.
Key words: rice    salt stress    salt tolerance    QTL    salt-tolerant gene    molecular mechanism    

水稻是全世界一半以上人口的主食,是最重要的谷类作物之一,但其对盐分胁迫较为敏感[1-2]。盐胁迫对水稻从种子萌发到生殖生长阶段都会产生不利影响,影响植株根系生长,渗透胁迫阻碍水稻对营养物质的吸收,造成其品质和产量下降,严重时会导致植株死亡[3-4]。盐胁迫严重制约农作物种植生产,可减少全世界农作物产量1/4~1/3[5],已成为影响作物产量和品质的重要因素之一[6-7]。广东省海岸线超过4 100 km,近海土地受海潮和海水型地下水的双重作用,加上台风影响造成的海水倒灌,使农作物长期受到盐害胁迫,最终土地丢荒。我国有近1亿hm2盐碱地,主要分布在西北、东北、华北及滨海地区。其中,近1 000万hm2盐碱地具有开发利用的潜力。水稻在全生育期几乎处于淹水状态,其根系能吸收土壤中的盐分,又能分泌有机酸使土壤结构变得疏松,提高土壤蓄水能力。此外,水稻的生长环境需要田间持水,田间持水可以“压盐”,水稻晒田排水又可以“洗盐、排盐”,因此水稻是一种改良盐渍土的优良作物[8]

从20世纪30年代开始,国内外育种家就开展水稻耐盐性鉴定工作。近30年来,国内外学者们开展了大量的水稻耐盐性分子机制研究工作,目前通过遗传定位到的耐盐QTL有1 000多个,鉴定到耐盐相关基因200多个。这对于利用分子标记辅助选择、基因编辑等手段提高水稻耐盐性育种效率具有非常重要的意义。国家近年来非常重视水稻耐盐碱研究工作,2023年中央一号文件明确提出“持续推动由主要治理盐碱地适应作物向更多选育耐盐碱植物适应盐碱地转变”。因此,加强水稻耐盐资源材料(特别是地方稻种资源)的精深鉴评、挖掘新的耐盐主效基因、深入研究其耐盐分子机制,对于加快水稻耐盐分子辅助育种进程、培育耐盐水稻新品种、保障国家粮食安全具有非常重要的意义。本文从国内外耐盐水稻材料鉴定与品种选育、水稻耐盐遗传分析与耐盐基因挖掘、水稻耐盐分子机制研究3个方面进行系统综述,并在此基础上对未来耐盐相关基因的挖掘及分子机制研究提出建议,以期为水稻耐盐机制研究与耐盐分子育种提供参考。

1 国内外耐盐水稻材料鉴定与品种选育

水稻耐盐性是指在盐环境下其忍耐和抵抗盐胁迫的能力。盐胁迫是指以Na+、Cl-等离子为主的生长环境,它对作物造成渗透胁迫和离子毒害,从而影响作物的正常生长发育。多年来,国内外育种家们在耐盐碱水稻选育方面开展了大量工作。斯里兰卡最早开始筛选和培育耐盐水稻品种,1939年培育出强耐盐水稻品种Pokkali。随后印度、菲律宾、孟加拉、国际水稻研究所、日本、韩国、俄罗斯等也相继育成耐盐水稻品种[9-10],如Nona Bokra、Kalarata 1-24、SR 26B、Chin.13、349 Jhona、BRI、Sail、IR46,IR4422-28-5,CSR23、VNIIR8207等。我国开展稻种资源耐盐碱性鉴定研究始于20世纪50年代。70年代江苏省农业科学院和中国水稻研究所等多家单位对国内稻种进行耐盐鉴定研究,先后筛选出如韭菜青、红芒香粳、长毛谷等一些耐盐性较强的地方稻及品种材料[11-12]。2016年袁隆平院士领衔的青岛海水稻研究发展中心成立,耐盐水稻越来越受到大众关注。我国陆续陪育出一批耐盐性强的水稻品种,如盐丰47、盐稻12号、盐稻21号、盐籼156、玉香油占、盐稻21号、广红3号、南粳盐1号、华内优086、荃9优1393、华荃优187、中科盐4号、旌7优42、袁两优1号、盐两优973、春两优5121、盐红1号等(表 1)。

表 1 国内外耐盐水稻地方种与育成品种 Table 1 Local rice varieties and cultivated varieties of salt-tolerant rice from China and other countries

2 水稻耐盐性遗传分析与相关基因发掘 2.1 水稻耐盐性QTL

水稻耐盐性无论在遗传学还是生理学上都是1个复杂的性状,受多个数量性状基因或少数主效基因控制。基于传统的QTL作图,在不同发育时期共检测到超过1 000个与耐盐相关的QTL。已鉴定到的QTL在水稻的各个时期均有分布,其中幼苗生长期和生殖生长期是水稻盐敏感时期,因此对水稻耐盐性的研究主要侧重于这两个时期。已经报道的QTL在水稻12条染色体上都有分布,其中第1号染色体上分布最多[13]。Lin等[14]利用矮三特2号/CB重组自交系群体,检测到1个位于第5染色体的QTL位点RG13与耐盐性显著相关,该位点的表型(存活力)贡献率达到11.6%。龚继明等[15]利用来源于籼稻窄叶青8号和粳稻京系17的双单倍体(DH)群体及高密度分子连锁图谱,在幼苗期用NaCl溶液胁迫处理该群体,以各株系存活率为指标,定位了7个耐盐性QTL,并将1个来源于窄叶青8号的耐盐主效基因Std定位于第1染色体的RG612和C131之间。顾兴友等[16]利用耐盐品种Pokkali和敏盐品种Peta构建回交群体,定位了4个与苗期耐盐性相关的QTL,12个与成熟期耐盐性相关的QTL,并发现水稻苗期和成熟期耐盐性存在一定相关性。Koyama等[17]利用IR4630/IR15324构建重组自交系群体,对水稻植株茎中的Na+和K+吸收量、Na+和K+浓度、Na+和K+浓度比值等性状进行QTL分析,共检测到11个与耐盐性有关的QTL。Lin等[18]利用耐盐籼稻品种Nona Bokra与盐敏感粳稻品种越光创建的F3群体,检测到11个与耐盐性相关的QTL,其中3个与幼苗存活率有关,8个与Na+和K+浓度相关。姚明哲[19]利用韭菜青和IR36创建的F2群体,检测到7个与水稻耐盐性相关的主效QTL。Wang等[20]利用耐盐地方品种韭菜青与另一对盐敏感的籼稻品种创建RIL群体来分析水稻芽期耐盐性,共检测到16个与芽期耐盐性有关的QTL,它们可解释总变异4.6%~43.7%,其中一些是新的耐盐QTL位点,并发现这些QTL位点均来自耐盐品种韭菜青。Cheng等[21]利用由中等耐盐品种秀水09和耐旱敏盐品种IR2061–520–6-9通过正、反交创建的2套基因导入系,分析不同遗传背景对检测控制耐盐相关性状QTL的影响。在2套导入系中共检测到47个与耐盐性相关的QTL,其中26个为主效QTL,21个为与环境互作的QTL(E-QTL)。邱生平[22]对盐害级别、相对苗高、相对茎叶干重、相对根干重和根系Na+/K+等5个水稻苗期耐盐相关性状的QTL进行定位,结果显示,在0.5% 和0.7% 的NaCl胁迫下,共检测到22个与5个耐盐性状相关的QTL,贡献率为3.1%~38.6%,分别位于第2、6、7、9、10、12号染色体上;此外,发现在0.5% 和0.7% 的NaCl胁迫下,水稻耐盐性既存在相同的遗传基础,也有明显不同的QTL存在,水稻耐盐性QTL的表达易受环境中盐浓度的影响。Bizimana等[23]利用IR29和耐盐品种Hasawi构建的重组自交系鉴定到20个苗期耐盐相关QTL。Haque等[24]利用耐盐地方品种Horkuch和高产水稻品种IR29构建的重组自交系群体,对开花期、株高、有效分蘖数、穗粒数、粒重、小穗育性、收获指数等9个性状进行QTL分析,鉴定到14个耐盐相关QTL,并发现大多数QTL是特定发育时期所特有的。Yuan等[25]利用籼稻9311和非洲长雄蕊野生稻构建的回交自交系群体(BIL),定位了27个与苗期耐盐相关的QTL,其中18个QTL来自非洲长雄蕊野生稻。

2.2 水稻耐盐性基因挖掘

通过国家水稻数据库(http://www.ricedata.cn/gene/)查询,目前挖掘到的水稻耐盐相关基因共207个,分布在12条染色体上[26]。一些耐盐相关基因的克隆如qSKC-1[14, 27]qSE3[28]DST[29]STH1[30]HST1[31]HaL3[32]RR22[31]RST1[33]AT1/GS3[34],加速了水稻耐盐分子机制研究进展。Lin等[14]和Ren等[27]利用Nona Bokra和Koshihikari杂交的F2: 3群体鉴定到第1号染色体上的耐盐基因qSKC-1,该基因负责调节地上部Na+含量,盐胁迫下其能把地上部分过量的Na+运输到根部,减轻Na+的毒害,提高水稻耐盐性。qSE3[28]编码1个K+转运基因OsHAK21,该基因在盐胁迫下增强了萌发种子对K+和Na+的吸收,激活了ABA信号通路,从而促进水稻种子发芽和幼苗生长。Huang等[29]从水稻品种中花11EMS诱变的突变体库中,筛选到一份较强抗旱、耐盐且稳定遗传的水稻突变体dst,并定位克隆了DST基因。该基因编码1个含C2H2类型锌指结构域的蛋白,是一种新型的转录因子。DST作为抗逆性的负调控因子,当其功能缺失时可直接下调H2O2代谢相关基因的表达,使其清除H2O2的能力下降,从而增加H2O2在保卫细胞中的累积,促使叶片气孔关闭、减少水分蒸发,最终提高水稻的耐盐能力。林鸿宣研究团队[30]从非洲稻遗传资源中定位克隆到1个控制水稻耐盐性的负向遗传因子STH1,其编码α/β折叠结构域的水解酶,盐胁迫下,STH1通过下调自身表达水平以抑制Hd3a的转录激活和表达,推迟植株的成花转变,使其保持营养生长时期以抵御盐胁迫。Takagi等[31]利用MutMap技术在6 000个EMS突变体中,筛选到1个耐盐突变体,命名为hitomebore salttolerant 1hst1),并在此突变体中定位到耐盐基因OsRR22,其编码一种B型反应调节蛋白。将hst1与Hitomebore回交,BC1子代再自交2次,培育出既有突变体hst1的高耐盐性,又保留了Hitomebore优良性状的水稻耐盐品种Kaijin[35]。研究发现,OsHAL3是新的光响应蛋白、耐盐蛋白,过表达OsHAL3能促进水稻幼苗生长,增强其耐盐性[32]。Deng等[33]在EMS诱变的水稻突变体库筛选到rst1突变体,并分离出新的耐盐基因RST1,编码生长素响应因子OsARF18,RST1功能缺失导致OsAS1基因表达上调,通过促进天冬酰胺的合成提高氮的利用率,同时减少NH4+过量积累,从而提高植株的耐盐性。虽然已经克隆了一些水稻耐盐性相关基因(表 2),但是通过正向遗传学克隆到的基因较少,可直接用于耐盐水稻育种的耐盐基因资源较为缺乏。

表 2 水稻重要耐盐基因 Table 2 Important salt-tolerant genes in rice

3 水稻耐盐分子机制研究 3.1 有机物渗透调节机制

盐胁迫对水稻影响初期表现为渗透胁迫,即水稻植株因土壤水势降低,根系对水分吸收受阻和细胞内水分倒流,出现生理性干旱,细胞膜透性变大、生长代谢紊乱、积累有毒物质,最终萎蔫甚至死亡[47-48]。盐胁迫下,水稻体内会合成脯氨酸、甜菜碱、海藻糖等有机渗透调节物质来降低细胞渗透压、稳定蛋白质和细胞结构,从而提高水稻耐盐性[49]。盐胁迫会诱导脯氨酸生物合成基因OsP5CS1OsP5CR的表达,通过增加脯氨酸的积累提高水稻耐盐性,减轻盐胁迫造成的损伤[50-51]。OsRPK1是调节水稻脯氨酸含量的负调控因子,过表达OsRPK1植株脯氨酸合成减少,水稻耐盐性降低,而RNA干涉植株的耐盐性提高[52]。OsTPP和TPS是参与海藻糖合成的两个关键酶,过表达OsTPP1OsTPS1OsTPS8均能够增加细胞中脯氨酸、海藻糖的含量,进而提高水稻耐盐性[53-54]OsTPS2OsTPS4OsTPS5OsTPS9可以通过提高植株海藻糖和脯氨酸的含量来增强水稻对盐等非生物胁迫的耐受性[55]。胆碱单加氧酶OsCMO和甜菜碱醛脱氢酶OsBADH1是合成水稻甘氨酸甜菜碱的关键酶,盐胁迫能诱导它们表达,过表达OsBADH1促进甘氨酸甜菜碱的积累增强水稻耐盐性,敲除OsBADH1则降低水稻耐盐性[56-57]。单糖转运蛋白OsGMST1、糖转运蛋白OsSWEET13和OsSWEET15在调节水稻植株体内可溶性糖的含量、运输和分布,维持植株中糖的平衡,增强植株耐盐适应性等方面发挥重要功能[58-59]。此外,水稻也会合成LEA蛋白来抵御盐胁迫,耐盐品种根部有大量LEA蛋白积累,敏感品种则相反。近年来研究表明,相关基因OsLEA3-2OsLEA4OsLEA5OsEm1能够提高植株耐盐性和对渗透胁迫的耐受性[60-63]图 1)。

绿色板块表示正调控基因,黄色板块表示负调控基因 Genes in green box are the positive regulatory genes and those in yellow box are negative regulatory genes 图 1 参与水稻耐盐调控的基因 Fig. 1 Genes involved in regulation of salt tolerance of rice

3.2 离子吸收转运调节机制

植物生长发育需要保持较低水平的Na+,而盐胁迫发生时,Na+和Cl大量积累,植物体内过量积累Na+而缺乏K+往往会造成水稻生物膜功能受到干扰,各种酶反应紊乱,无法合成所需有机物,导致生理代谢紊乱[64]。植物体内通过吸收、转运、外排等方式控制Na+的浓度。目前已明晰Na+在植物体内吸收和转运的分子机制,水稻吸收和转运Na+主要依赖Na+转运蛋白(HKT)和非选择性阳离子通道(NSCCs)。HKT将Na+从木质部导管转移到薄壁细胞,再回流到根部以减少地上部导管中的Na+含量[65]。水稻中HKT蛋白有钠特异性转运蛋白(OsHKT1和OsHKT8)和钠钾的共转运蛋白(OsHKT2)两大类,前者参与植株内Na+和K+的运输,有助于减少盐胁迫下叶片中Na+的积累,后者帮助维持细胞质内Na+/K+的稳态,调控水稻对盐胁迫的响应[66-67]。研究发现,敲除OsHKT1;1的突变体,水稻植株对盐胁迫更敏感,幼苗叶片中Na+的浓度降低,并且根系Na+浓度比茎部Na+浓度更低,还发现OsHKT1;1能将Na+从木质部导管转运到木质部薄壁细胞来抑制Na+从根到茎的转运,并促进Na+从茎到根的转运,表明OsHKT1;1可能在Na+的长距离转运、地上部外排等方面有重要功能[67-68]。研究表明,盐胁迫下转录因子OsPRR73与组蛋白去乙酰化酶HDAC10互作能被赋予特异性耐盐性,它可与OsHKT2;1启动子结合以抑制其转录,能在特定时间段减少对Na+的吸收,表明植物的盐胁迫反应可以由生物钟相关蛋白调节[69]。环核苷酸门控通道(CNGC)和谷氨酸受体(GluRs)参与植物根对Na+的摄取[70],盐胁迫下水稻耐盐品种中CNGC1的下调程度高于盐敏感品种,而GluRs在水稻中尚未见报道。

在盐胁迫下,植物细胞中Na+积累过多会产生毒性,导致离子稳态破坏[71]。植物已进化出从细胞质中去除Na+以维持体内低水平Na+的系统。盐胁迫下,细胞内Na+稳态的重建主要由细胞膜上的盐超敏感蛋白1(SOS1)介导Na+外排,以及液泡膜上的Na+/K+逆向转运蛋白(NHX)介导Na+运往液泡中和细胞外[72]。目前已知调控Na+稳态所需的信号通路是SOS信号通路,该通路由SOS1、SOS2、SOS3、SCaPB8组成,通过外排过量的Na+来缓解盐胁迫[73-74]。SOS1是Na+/H+ 逆向转运蛋白,在将Na+从细胞质转运到外质体的过程中起重要作用,定位于质膜的NHX7/SOS1主要运输Na+,盐胁迫下其表达上调并通过OsCBL4-OsCIPK24-OsSOS1途径激活,在将Na+从根中排出发挥重要作用[75]。盐胁迫下SOS3/SCaPB8感知到细胞质钙信号增加,传导给下游SOS2,随后SOS2磷酸化SOS1,通过根和茎调控对Na+的吸收,增加Na+/H+交换活性,减少水稻体内Na+的积累,帮助植物抵抗盐胁迫[76]

K+不仅能够作为催化剂参与蛋白质与糖的合成,而且在植物光合作用中发挥重要作用。负责转运吸收K+的主要是OsHAK家族[77]、OsAKT1[78]和OsKCO1[79],其中OsHAK家族基因负责植物各部位K+吸收转运及维持Na+/K+稳态,OsAKT1和OsKCO1分别负责K+向内和向外的运输。当细胞质中积累了过多的Na+会干扰K+功能,因此,植物在盐胁迫下存活应维持较低的胞内Na+/K+比率[61]。OsNHX能将细胞质中积累的Na+和K+转入液泡,研究表明,除定位于质膜的NHX7和NHX8外,其他NHX家族成员定位于细胞间室,可以运输K+和Na+,与作物的耐盐性密切相关[80]OsNHX1受盐胁迫诱导表达,介导Na+运输并贮存于液泡,过表达OsNHX1能提高植株耐盐性[81]。H+- 焦磷酸化酶OsVP1是H+质子泵,过表达OsVP1能提高植株耐盐性,OsVP1能介导Na+运输并贮存于液泡,将H+从细胞质泵入液泡,导致细胞质和液泡二者间的电位梯度增加,从而促进Na+/H+交换,提高水稻对盐胁迫的耐受性[82]。以上研究表明,植物适应盐胁迫的直接重要机制是通过调控Na+的吸收、转运、外排和维持体内Na+、K+等稳态平衡。

此外,Cl-通道蛋白OsCLC1[83]、硝酸盐转运蛋白OsNRT1;2[84]、Ca2+通道蛋白OsTPC1[85]、H+/Ca2+反转运体OsCAX1[86]在维持体内离子稳态、提高水稻对盐胁迫耐受性方面也发挥重要作用(图 1)。

3.3 抗氧化系统清除活性氧机制

植物在感应盐胁迫后将早期的胁迫信号传递给不同的细胞机制启动信号转导,随后活性氧(ROS)等二次信号分子合成[87]。ROS浓度较低时可以作为激活盐胁迫反应的信号,但过量的ROS积累会引起植物DNA突变、蛋白质降解及碳水化合物和脂质过氧化的毒性反应,植物需要通过合成抗氧化酶来维持氧化还原稳态[88]。由于清除活性氧的作用,抗氧化基因已被证明参与水稻的耐盐性。SOD催化活性氧清除系统的第一步,将O2分解为H2O2,过表达OsMn-SOD1OsCu/Zn-SOD的植株能增强水稻ROS解毒能力,减少水稻体内O2和H2O2的积累,减轻盐诱导的氧化损伤[89-90]。APX能将H2O2催化为H2O和O2OsAPX2OsAPXaOsAPXbOsAPx8OsAPX7在盐胁迫下表达均上调[91-93],增加APX活性,增强水稻对盐胁迫的耐受性。盐胁迫促进了OsGR3OsGR2OsGRX8的表达[94-95],增加谷胱甘肽含量,对提高水稻盐胁迫耐受性也有重要作用,其中OsGR3OsGRX8正调控水稻耐盐性。上述抗氧化酶基因为功能基因,其编码的蛋白质在胁迫条件下发挥直接保护膜和大分子的作用,以抵御盐胁迫造成的伤害。另外还有部分为调控基因,其产物通过调节盐胁迫环境下功能基因的表达来保护植物免受逆境伤害,从而提高植株耐盐性。定位于细胞核的OsZFP213编码1个锌指蛋白,过表达OsZFP213的转基因水稻耐盐性增强,此外,OsZFP213与OsMAPK3互作可激活OsZFP213活性,从而增强水稻清除活性氧的能力协同调控水稻耐盐性[96]。R2R3-MYB转录因子OsMYB2是盐胁迫的正调节因子,在盐胁迫条件下,过表达OsMYB2的转基因水稻增加了植株可溶性糖、游离脯氨酸和LEA蛋白等渗透物质的积累,抑制MDA和H2O2的积累,提高水稻对盐胁迫的耐受性[97]。研究发现,DST可直接调节H2O2稳态相关基因负调控气孔关闭,从而提高水稻的耐旱性和耐盐性[98],而抗逆负调控因子DCA1可促进DST的转录活性,并且两者可能形成异源四聚体调节H2O2的量,实现调控气孔的开度[99]。这些基因的发现及功能鉴定加深了我们对水稻耐盐性与ROS之间联系的认识(图 1)。

3.4 激素调控盐胁迫响应机制

高盐度能刺激植物体内的内源性激素合成发生改变,激素调控响应是植物响应盐胁迫的核心机制之一。激素主要分为促进生长和胁迫响应2方面[100],促进生长的激素包括生长素(ZAA)、赤霉素(GA)、细胞分裂素(CTK)、油菜素内酯(BR)和独角金内酯(SLs);部分促进生长激素也参与胁迫响应,胁迫响应激素包括脱落酸(ABA)、乙烯(ETH)、水杨酸(SA)和茉莉酸(JA)。

ABA是应对盐胁迫最重要的激素,非生物胁迫下ABA参与调控气孔关闭和根系生长,以及保护细胞和各种根组织[101]。ABA缺陷突变体表现出较差的盐敏感性。ABA介导的耐盐性调控主要分为2个方面,一是对ABA合成的调控,二是对ABA核心信号途径(PYL-PP2C-SnRK)的调节[102]。NCED催化类胡萝卜素裂解反应,研究表明,NCED5能被盐胁迫快速诱导[103]。在盐胁迫条件下,植株体内ABA快速积累并结合PYR/PYL/RCAR形成ABA-PYR/PYL/RCAR复合体,该复合体抑制PP2C的磷酸酶活性,从而激活SnRK2s激酶活性,SnRK2s调节ABA响应的ABF/AREB类转录因子和ABI5,从而直接或间接调控植物耐盐性[104]。ABA和ROS作为盐胁迫应答过程的2类重要信号在耐盐性方面存在联系。ABI4是ABA信号途径的调节因子,ABI4直接与参与ROS产生和清除的关键基因RbohDVTC2结合,通过介导ROS的积累和清除来调节盐胁迫下的种子萌发[105]。盐诱导的ABA激活SnRKs磷酸化膜结合NADPH氧化酶RBOHF,增加质外体中H2O2的产生,从而参与了盐胁迫下ROS稳态的调节,而ABI1起抑制作用[106]

其他激素对盐胁迫也起着重要作用。ETH负调控水稻对盐胁迫的耐性,敲除ETH信号途径基因OsEIL1OsEIL2能提高水稻的耐盐性,而过表达则表现出对盐胁迫的超敏感性,说明OsEIL1OsEIL2负调控水稻的耐盐性[107]。在水稻中过表达野生大豆耐盐碱转录因子GsERF6可提高ROS清除水平、渗透调节能力及胁迫应答基因的表达,从而提高水稻的耐盐碱性[108]。JA合成后经茉莉酰氨基酸结合物合成酶AtJAR1催化形成JA-Ile复合体,从而激活JA信号途径,JA信号途径在盐胁迫后期阶段调节转录程序和恢复生长速率。李丹丹等[109]对拟南芥AtJAR1的2个突变体进行不同浓度盐和ABA处理,结果表明AtJAR1突变影响JA信号通路,不仅可以缓解盐胁迫和ABA对种子萌发和根系生长产生的抑制作用,而且可以促进AtHAK5的表达和根系对K+的吸收转运,进而改变细胞内K+/Na+平衡,最终影响植物耐盐性。IAA参与调节盐胁迫下植株根系生长,在盐胁迫下IAA转运蛋白AUX1和PIN1/2的分布变得更加分散,表明IAA的极性转运可能减少了IAA在根系中的积累[110]TIR1AFB2在盐胁迫下表达下调,表明IAA积累的减少和IAA受体表达的抑制都维持着低IAA信号反应来调节植物的生长适应[111]。降低GA水平或发芽后GA信号传导是提高植物耐盐性的必要条件,盐胁迫下泛素- 蛋白酶体OsDSK2a水平下降,从而释放GA代谢相关蛋白EUI,使生物活性GA水平降低,抑制水稻生长[112]。GA分解代谢基因CYP71D8L通过减少GA积累增强植株对盐胁迫的耐受性[113]。此外,一些GA代谢相关基因(如OsGA2ox5[114]OsMYB91[115]等)可以通过延缓植物生长来增强其对盐胁迫的耐性。

不同植物激素之间的相互作用对盐胁迫反应也发挥重要作用。如ABA可与IAA、GA和JA等激素协同调控植物对盐胁迫的应答响应[116]。ABA和IAA可能协同参与调控植物侧根生长。在ABA受体pyl8pyl9突变体株系中施加ABA或IAA均能提高pyl8/9突变体的侧根数目,表明低浓度的ABA是侧根形成所必需的,而ABA诱导的侧根原基(LRP)可能依赖于IAA[117];进一步研究表明PYL8/9通过调节MYB77-ARF7介导的信号传导来促进LRP启动[118]。GA和ABA之间的相互作用,是植物规避早期非生物胁迫的关键机制。ABA可与JA交互作用响应植物盐胁迫。MYC2是JA信号路径的关键因子,在盐胁迫下促进ABA诱导型基因RD22AtADH1的表达,使植物适应渗透胁迫。反之,ABA可以诱导PnJAZ表达,缓解盐胁迫下产生过量ABA,从而提高植物耐盐性[119]。盐胁迫下,拟南芥中过表达独脚金内酯(SLs)信号途径基因SsMAX2导致ABA合成基因表达上调,进而提高植物调节渗透、干旱和盐胁迫的耐受性[120]。研究发现,低浓度ABA和BR信号通过协同作用调控水稻耐盐性,揭示了ABI3-OsGSR1模块分子机制[121]。为了适应盐胁迫,植物已经进化出多种策略调节盐胁迫和内源激素,从而优化生长和胁迫反应之间的平衡(图 1)。

4 结语与展望

土壤盐渍化对水稻产量和品质形成了重大威胁,提高水稻品种耐盐性已成为水稻育种的重要目标之一。虽然在过去的30年里,许多水稻耐盐相关基因被鉴定和克隆,其耐盐机制也被逐步解析,但是将这些基因应用到耐盐水稻育种中仍然是个漫长且富有挑战的过程。这是因为水稻耐盐性是个复杂的数量性状,目前报道的基因和位点中,只有极少数基因或位点的单倍型可以用于分子标记辅助育种。例如Saltol数量性状位点QTL有助于提高水稻耐盐性,其SSR分子标记已经被应用到水稻分子标记辅助育种中[122]。但由于QTL定位是基于特定亲本遗传变异定位的,这种变异不是普遍存在的,因此不能适用于所有的育种群体,从而使分子标记辅助育种具有一定局限性[26]。此外,目前克隆的耐盐相关基因大多是通过反向遗传学方法获得,且大多是在过表达条件下表现出耐盐性,或者耐盐基因为隐性,难以在耐盐水稻育种中应用。

目前水稻离子方面的研究机制主要集中在Na+、K+、Ca2+的响应、吸收、转运和外排上,而对Cl-、NO3-的研究还很少,因此有必要加强水稻在盐胁迫下是如何外排Cl-、NO3-以提高自身耐盐性的研究,尤其是它们从根到茎的途径中被排除的机制及其位置。此外,ABA信号在水稻对盐胁迫反应中的作用被广泛研究,其他植物激素信号通路及其与ABA信号的相互作用也值得进一步探索。耐盐性从感知和信号传导到适应性耐受机制的发展仍然很模糊,后续加强探索盐胁迫感知的上游成分,以及已经确定的调控途径之间可能存在的联系。

除了利用QTL精细定位挖掘基因外,近年来也报道了很多利用基因芯片、全基因组关联分析(GWAS)、集团分离分析法(BSA)等方法挖掘水稻耐盐相关基因的研究成果。Sun等[98]利用长毛谷与浙辐802杂交构建的F2群体,采用BSA法结合转录组分析的方法,挖掘到1个耐盐主效基因OsPP2C8。Naveed等[101]对来自25个国家的208份水稻核心种质在发芽期和幼苗期的13个耐盐相关性状进行评估,利用覆盖水稻基因组372 Mb的395 553个SNP标记和多位点混合线性模型,通过GWAS分析方法鉴定到6个影响发芽期耐盐性的数量性状核苷酸QTN。因此,将QTL精细定位与基因组重测序、转录组、代谢组和蛋白组学等技术结合起来,可以更高效地挖掘水稻耐盐相关基因,为解析水稻耐盐分子机制提供更丰富的理论基础。随着基因编辑与遗传转化技术的发展,可以直接对目的基因进行编辑,更快速地提高水稻耐盐性。例如通过敲除盐敏感性基因DSTOsRR22OsEIL1来提高水稻耐盐性[122]。随着基因组重测序、基因芯片、基因编辑、分子标记开发等先进技术不断发展,水稻复杂的耐盐分子机制将得到更深入的解析。

参考文献(References):
[1]
AN H Z, LIU K, WANG B X, TIAN Y L, GE Y W, ZHANG Y Y, TANG W J, CHEN G M, YU J, WU W, LIU X L, ZHAO Y Q, LI J, ZHANG H Z, YANG B, JIANG X Z, PENG C, ZHOU C, ZHU C S, WANG C M, WAN J M. Genome-wide association study identifies QTLs conferring salt tolerance in rice[J]. Plant Breeding, 2020, 139: 73-82. DOI:10.1111/pbr.12750
[2]
DENG X J, YUAN S, CAO H S, LAM S M, SHUI G H, HONG Y Y, WANG X M. Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought[J]. Plant, Cell & Environment, 2019, 42(2): 536-548. DOI:10.1111/pce.13437
[3]
MACHADO R, SERRALHEIRO R. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization[J]. Horticulturae, 2017, 3(2): 30. DOI:10.3390/horticulturae3020030
[4]
XIAO F, ZHOU H P. Plant salt response: Perception, signaling, and tolerance[J]. Frontiers in Plant Science, 2023, 13: 1053699. DOI:10.3389/fpls.2022.1053699
[5]
MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250. DOI:10.1046/j.0016-8025.2001.00808.x
[6]
QIN H, LI Y X, HUANG R F. Advances and challenges in the breeding of salt-tolerant rice[J]. International Journal of Molecular Sciences, 2020, 21(21): 8385. DOI:10.3390/ijms21218385
[7]
徐培智, 戴文举, 黄旭, 林碧珊, 曾招兵, 张桥, 解开治. 广东省滨海盐土特征及改良策略[J]. 广东农业科学, 2023, 50(2): 87-94. DOI:10.16768/j.issn.1004-874X.2023.02.010
XU P Z, DAI W J, HUANG X, LIN B S, ZENG Z B, ZHANG Q, XIE K Z. Characteristics of seashore saline soils in Guangdong Province and improvement strategies[J]. Guangdong Agricultural Sciences, 2023, 50(2): 87-94. DOI:10.16768/j.issn.1004-874X.2023.02.010
[8]
王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展[J]. 中国水稻科学, 2022, 36(2): 105-117. DOI:10.16819/j.1001-7216.2022.210609
WANG Y, ZHANG Y, LIU Y H, LI R K, GE J F, DENG S W, ZHANG X B, CHEN Y L, WEI H H, DAI Q G. Rice response to salt stress and research progress in salt tolerance mechanism[J]. Chinese Journal of Rice Science, 2022, 36(2): 105-117. DOI:10.16819/j.1001-7216.2022.210609
[9]
马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望[J]. 杂交水稻, 2023, 1-10. DOI:10.16267/j.cnki.1005-3956.20221117.389
MA G H, ZHENG D F, MU D W, WANG F B, DAI Q G, WEI Z W, FENG N J, WANG C L. Research progress and prospect of saline-alkali tolerant rice[J]. Hybrid Rice, 2023, 1-10. DOI:10.16267/j.cnki.1005-3956.20221117.389
[10]
巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561. DOI:10.16819/j.1001-7216.2022.211111
WU M M, ZENG W, ZHAI R R, YE J, ZHU G F, YU F M, ZHANG X M, YE S H. Research progress in molecular mechanism and breeding status of salt tolerance in rice[J]. Chinese Journal of Rice Science, 2022, 36(6): 551-561. DOI:10.16819/j.1001-7216.2022.211111
[11]
孙明法, 严国红, 王爱民, 朱国永, 唐红生, 何冲霄, 任仲玲, 刘凯, 张桂云, 施伟, 赵绍路, 孙一标, 朱静雯, 宛柏杰, 姚立生. 水稻耐盐育种研究进展[J]. 大麦与谷类科学, 2017, 34(4): 1-9. DOI:10.14069/j.cnki.32-1769/s.2017.04.001
SUN M F, YAN G H, WANG A M, ZHU G Y, TANG H S, HE C X, REN Z L, LIU K, ZHANG G Y, SHI W, ZHAO S L, SUN Y B, ZHU J W, WAN B J, YAO L S. Research progress on the breeding of salt-tolerant rice varieties[J]. Barley and Cereal Sciences, 2017, 34(4): 1-9. DOI:10.14069/j.cnki.32-1769/s.2017.04.001
[12]
王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米, 2019, 25(1): 1-6. DOI:10.3969/j.issn.1006-8082.2019.01.001
WANG L C, ZHANG Y D, ZHAO L, LU K, ZHU Z, CHEN T, ZHAO Q Y, YAO S, ZHOU L H, ZHAO C F, LIANG W H, SUN M F, YAN G H. Research status, problems and suggestions on salt-alkali tolerant rice[J]. China Rice, 2019, 25(1): 1-6. DOI:10.3969/j.issn.1006-8082.2019.01.001
[13]
SINGH R K, KOTA S, FLOWERS T J. Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age[J]. Theoretical and Applied Genetics, 2021, 134: 3495-3533. DOI:10.1007/s00122-021-03890-3
[14]
LIN H X, ZHU M Z, YANO M, GAO J P, LIANG Z W, SU W A, HU X H, REN Z H, CHAO D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J]. Theoretical and Applied Genetics, 2004, 108(2): 253-260. DOI:10.1007/s00122-003-1421-y
[15]
龚继明, 何平, 钱前, 沈利爽, 朱立煌, 陈受宜. 水稻耐盐性QTL的定位[J]. 科学通报, 1998, 43(17): 1847-1850.
GONG J M, HE P, QIAN Q, SHEN L S, ZHU L H, CHEN S Y. Mapping of QTL for salt tolerance in rice[J]. Chinese Science Bulletin, 1998, 43(17): 1847-1850.
[16]
顾兴友, 严小龙, 郑少玲, 卢永根. 水稻苗期耐盐性双列杂交分析[J]. 华南农业大学学报, 1998(2): 31-35.
GU X Y, YAN X L, ZHENG S L, LU Y G. Diallel cross analysis of salt tolerance in rice seedlings[J]. Journal of South China Agricultural University, 1998(2): 31-35.
[17]
KOYAMA M L, LEVESLEY A, KOEBNER R M D, FLOWERS T J, YEO A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice1[J]. Plant Physiology, 2001, 125(1): 406-422. DOI:10.1104/pp.125.1.406
[18]
LIN H X, YANAGIHARA S, ZHUANG J Y, SENBOKU T, ZHENG K, YASHIMA S. Identification of QTL for salt tolerance in rice via molecular markers[J]. Chinese Journal of Rice Science, 1998, 12(2): 72-78. DOI:10.16819/j.1001-7216.1998.02.002
[19]
姚明哲. 太湖流域粳稻地方品种韭菜青耐盐性的遗传分析[D]. 南京: 南京农业大学, 2002.
YAO M Z. Inherietnce analysis of sait tolerance of a rice ladnrace Jiucaiqing from Taihu Valley[D]. Nanjing: Nanjing Agricultural University, 2002.
[20]
WANG Z F, WANG J F, BAO Y M, WU Y Y, ZHANG H S. Quantitative trait loci controlling rice seed germination under salt stress[J]. Euphytica, 2011, 178: 297-307. DOI:10.1007/s10681-010-0287-8
[21]
CHENG L R, WANG Y, MENG L J, HU X, CUI Y R, SUN Y, ZHU L H, ALI J, XU J L, LI Z K. Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice[J]. Genome, 2011, 55(1): 45-55. DOI:10.1139/g11-075
[22]
邱生平. 水稻耐盐性的遗传分析及耐盐相关基因的克隆[D]. 南京: 南京农业大学, 2006.
QIU S P. Genetic analysis and relative gene cloning for salt tolerancein rice[D]. Nanjing: Nanjing Agricultural University, 2006.
[23]
BIZIMANA J B, LUZI-KIHUPI A, MURORI R W, SINGH R K. Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi mapping population[J]. Journal of Genetics, 2017, 96: 571-582. DOI:10.1007/s12041-017-0803-x
[24]
HAQUE T, ELIAS S M, RAZZAQUE S, BISWAS S, KHAN S F, JEWEL G M N A, RAHMAN M S, JUENGER T E, SERA Z I. Salt tolerance QTLs of an endemic rice landrace, Horkuch at seedling and reproductive stages[J]. Scientific Reports, 2022, 12: 17306. DOI:10.1038/s41598-022-21737-9
[25]
YUAN L, ZHANG L C, WEI X, WANG R H, LI N N, CHEN G L, FAN F F, HUANG S Y, LI J X, LI S Q. Quantitative trait locus mapping of salt tolerance in Wild Rice Oryza longistaminata[J]. International Journal of Molecular Sciences, 2022, 23: 2379. DOI:10.3390/ijms23042379
[26]
LIU C T, MAO B G, YUAN D Y, CHU C C, DUAN M J. Salt tolerance in rice: Physiological responses and molecular mechanisms[J]. The Crop Journal, 2022, 10(1): 13-25. DOI:10.1016/j.cj.2021.02.010
[27]
REN Z H, GAO J P, LI L G, CAI X L, HUANG W, CHAO D Y, ZHU M Z, WANG Z Y, LUAN S, LIN H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141-1146. DOI:10.1038/ng1643
[28]
HE Y Q, YANG B, HE Y, ZHAN C F, CHENG Y H, ZHANG J H, ZHANG H S, CHENG J P, WANG Z F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice[J]. The Plant Journal, 2019, 97(6): 1089-1104. DOI:10.1111/tpj.14181
[29]
HUANG X Y, CHAO D Y, GAO J P, ZHU M Z, SHI M, LIN H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture contril[J]. Genes Development, 2009, 23(15): 1805-1817. DOI:10.1101/gad.1812409
[30]
XIANG Y H, YU J J, LIAO B, SHAN J X, YE W W, DONG N Q, GUO T, KAN Y, ZHANG H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, LIN H X. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice[J]. Molecular Plant, 2022, 15(12): 1908-1930. DOI:10.1016/j.molp.2022.10.017
[31]
TAKAGI H, TAMIRU M, ABE A, YOSHIDA K, UEMURA A, YAEGASHI H, OBARA T, OIKAWA K, UTSUSHI H, KANZAKI E, MITSUOK A C, NATSUME S, KOSUGI S, KANZAKI H, MATSUMURA H, URASAKI N, KAMOUN S, TERAUCHI R. MutMap accelerates breeding of a salt-tolerant rice cultivar[J]. Nature Biotechnology, 2015, 33(5): 445-449. DOI:10.1038/nbt.3188
[32]
SU L, SHAN J X, GAO J P, LIN H X. OsHAL3, a blue light-responsive protein, interacts with the floral regulator Hd1 to activate flowering in rice[J]. Molecular Plant, 2016, 9(2): 233-244. DOI:10.1016/j.molp.2015.10.009
[33]
DENG P, JING W, CAO C J, SUN M F, CHI W C, ZHAO S L, DAI J Y, SHI X Y, WU Q, ZHANG B L, JIN Z, GUO C X, TIAN Q X, SHEN L, YU J, JIANG L, WANG C M, CHIN J H, YUAN J Y, ZHANG Q, ZHANG W H. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2084629177. DOI:10.1073/pnas.2210338119
[34]
ZHANG H L, YU F F, XIE P, SUN S Y, QIAO X H, TANG S Y, CHEN C X, YANG S, MEI C, YANG D K, WU Y R, XIA R, LI X, LU J, LIU Y X, XIE X W, MA D M, XU X, LIANG Z W, FENG Z H, HUANG X H, YU H, LIU G F, WANG Y C, LI J Y, ZHANG Q F, CHEN C, OUYANG Y D, XIE Q. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379(6638): eade8416. DOI:10.1126/science.ade8416
[35]
RANA M M, TAKAMATSU T, BASLAM M, KANEKO K, ITOH K, HARADA N, SUGIYAMA T, OHNISHI T, KINOSHITA T, TAKAGI H, MITSUI T. Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding[J]. International Journal of Molecular Sciences, 2019, 20(10): 2585. DOI:10.3390/ijms20102585
[36]
SAKURABA Y, PIAO W, LIM J H, HAN S H, KIM Y S, AN G, PAEK N C. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant & cell physiology, 2015, 56(12): 2325-2339. DOI:10.1093/pcp/pcv144
[37]
WANG J, NAN N, LI N, LIU Y T, WANG T J, HWANG I, LIU B, XU Z Y. A DNA methylation reader-chaperone regulator-transcription factor complex activates OsHKT1;5 expression during salinity stress[J]. The Plant Cell, 2020, 32(11): 3535-3558. DOI:10.1105/tpc.20.00301
[38]
TODA Y, TANAKA M, OGAWA D, KURATA K, Kurotani K, HABU Y, ANDO T, SUGIMOTO K, MITSUDA N, KATOH E, ABE K, HIROCHIKA H, HATTORI T, TAKEDA S. Rice salt sensitive3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation[J]. The Plant Cell, 2013, 25(5): 1709-1725. DOI:10.1105/tpc.113.112052
[39]
KUROTANI K, HAYASHI K, HATANAKA S, TODA Y, OGAWA D, ICHIKAWA H, ISHIMARU Y, TASHITA R, SUZUKI T, UEDA M, HATTORI T, TAKEDA S. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice[J]. Plant & Cell Physiology, 2015, 56(4): 779-789. DOI:10.1093/pcp/pcv006
[40]
MO W P, TANG W J, DU Y X, JING Y J, BU Q Y, LIN R C. Phytochrome-interacting factor-LIKE14 and Slender Rice1 interaction controls seedling growth under salt stress[J]. Plant Physiology, 2020, 184(1): 506-517. DOI:10.1104/pp.20.00024
[41]
YIN W C, XIAO Y H, NIU M, MENG W J, LI L L, ZHANG X X, LIU D P, ZHANG G X, QIAN Y W, SUN Z T, HUANG R Y, WANG S P, LIU C M, CHU C C, TONG H N. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice[J]. The Plant Cell, 2020, 32(7): 2292-2306. DOI:10.1105/tpc.19.00542
[42]
XU N, CHU Y L, CHEN H L, LI X X, WU Q, JIN L, WANG G X, HUANG J L. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genetics, 2018, 14(10): e1007662. DOI:10.1371/journal.pgen.1007662
[43]
YANG M F, SUN F, WANG S Y, QI W W, WANG Q J, DONG X X, YANG J S, LUO X J. Down-regulation of OsPDCD5, a homolog of the mammalian PDCD5, increases rice tolerance to salt stress[J]. Molecular Breeding, 2013, 31(2): 333-346. DOI:10.1007/s11032-012-9793-9
[44]
TAO Z, KOU Y J, LIU H B, LI X H, XIAO J H, WANG S P. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4863-4874. DOI:10.1093/jxb/err144
[45]
KOTCHONI S O, JIMENEZ L J C, GAO D Y, EDWARDS V, GACHOMO E W, MARGAM V M, SEUFFERHELD M J. Modeling-dependent protein characterization of the rice Aldehyde Dehydrogenase (ALDH) superfamily reveals distinct functional and structural features[J]. PLoS One, 2010, 5(7): e11516. DOI:10.1371/journal.pone.0011516
[46]
BOONBURAPONG B, BUABOOCHA T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biology, 2007, 7(1): 4. DOI:10.1186/1471-2229-7-4
[47]
NEGRÃO S, SCHMÖCKEL S M, TESTER M. Evaluating physiological responses of plants to salinity stress[J]. Annals of Botany, 2017, 119(1): 1-11. DOI:10.1093/aob/mcw191
[48]
肖京林, 覃美, 凌桂芝, 黎晓峰. 植物细胞壁对有害金属与盐分耐受性作用研究进展[J]. 广东农业科学, 2020, 47(9): 73-80. DOI:10.16768/j.issn.1004-874X.2020.09.010
XIAO J L, QIN M, LING G Z, LI X F. Advances in studies on the resistance of plant cell walls to harmful metals and salt[J]. Guangdong Agricultural Sciences, 2020, 47(9): 73-80. DOI:10.16768/j.issn.1004-874X.2020.09.010
[49]
LIANG W J, MA X L, WAN P, LIU L Y. Plant salt-tolerance mechanism: A review[J]. Biochemi cal and Biophysical Research Communications, 2018, 495(1): 286-291. DOI:10.1016/j.bbrc.2017.11.043
[50]
SRIPINYOWANICH S, KLOMSAKUL P, BOONBURAPONG B, BANGYEEKHUN T, ASAMI T, GU H, BUABOOCHA T, CHADCHAWAN S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress[J]. Environmental and Experimental Botany, 2013, 86: 94-105. DOI:10.1016/j.envexpbot.2010.01.009
[51]
张霞, 唐维, 刘嘉, 刘永胜. 过量表达水稻OsP5CS1OsP5CS2基因提高烟草脯氨酸的生物合成及其非生物胁迫抗性[J]. 应用与环境生物学报, 2014, 20(4): 717-722. DOI:10.3724/SP.J.1145.2014.03010
ZHANG X, TANG W, LIU J, LIU Y S. Co-expression of rice o-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance[J]. Chinese Journal of Applied & Environmental Biology, 2014, 20(4): 717-722. DOI:10.3724/SP.J.1145.2014.03010
[52]
李晶岚, 陈鑫欣, 石翠翠, 刘方惠, 静孙, 葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020, 46(8): 1217-1224. DOI:10.3724/SP.J.1006.2020.92060
LI J L, CHEN X X, SHI C C, LIU F H, SUN J, GE R C. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice[J]. Acta Agronomica Sinica, 2020, 46(8): 1217-1224. DOI:10.3724/SP.J.1006.2020.92060
[53]
VISHAL B, KRISHNAMURTHY P, RAMAMOORTHY R, KUMAR P. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition[J]. New Phytologist, 2018, 221(3): 1369-1386. DOI:10.1111/nph.15464
[54]
GE L F, CHAO D Y, SHI M, ZHU M Z, GAO J P, LIN H X. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J]. Planta, 2008, 228(1): 191-201. DOI:10.1007/s00425-008-0729-x
[55]
LI H W, ZANG B S, DENG X W, WANG X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234(5): 1007-1018. DOI:10.1007/s00425-011-1458-0
[56]
HASTHANASOMBUT S, SUPAIBULWATTANA K, MII M, NAKAMURA I. Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance[J]. Plant Cell, Tissue and Organ Culture, 2011, 104: 79-89. DOI:10.1007/s11240-010-9807-4
[57]
TANG W, SUN J Q, LIU J, LIU F F, YAN J, GOU X J, LU B R, LIU Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa)[J]. Plant Molecular Biology, 2014, 86(4): 443-454. DOI:10.1007/s11103-014-0239-0
[58]
CAO H, GUO S Y, XU Y Y, JIANG K, JONES A M, CHONG K. Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa)[J]. Journal of Experimental Botany, 2011, 62(13): 4595-4604. DOI:10.1093/jxb/err178
[59]
MATHAN J, SINGH A, RANJAN A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice[J]. Physiologia Plantarum, 2020, 171(4): 620-637. DOI:10.1111/ppl.13210
[60]
HU T Z, ZENG H, HE S, WU Y M, WANG G X, HUANG X Y. Molecular analysis of OsLEA4 and its contributions to improve E. coli viability[J]. Applied Biochemistry and Biotechnology, 2012, 166(1): 222-233. DOI:10.1007/s12010-011-9418-5
[61]
DUAN J L, CAI W M. OsLEA3-2, an abiotic stressinduced gene of rice plays a key role in salt and drought tolerance[J]. PLoS One, 2012, 7: e45117. DOI:10.1371/journal.pone.0045117
[62]
HE S, TAN L L, HU Z L, CHEN G P, WANG G X, HU T Z. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L.[J]. Molecular Genetics and Genomics, 2012, 287(1): 39-54. DOI:10.1007/s00438-011-0660-x
[63]
YU J, LAI Y M, WU X, WU G, GUO C K. Overexpression of OsEm1 encoding a group Ⅰ LEA protein confers enhanced drought tolerance in rice[J]. Biochemical and Biophysical Research Communications, 2016, 478(2): 703-709. DOI:10.1016/j.bbrc.2016.08.010
[64]
WU H H. Plant salt tolerance and Na+ sensing and transport[J]. The Crop Journal, 2018, 6(3): 215-225. DOI:10.1016/j.cj.2018.01.003
[65]
ALI A, MAGGIO A, BRESSAN R, YUN D J. Role and functional differences of HKT1-type transporters in plants under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5): 1059. DOI:10.3390/ijms20051059
[66]
RIEDELS J, MILLER J K, VALDEBENITO M B, PIÑEROS M A, GONZÁLEZ W, DREYER I. Plant HKT channels: an updated view on structure, function and gene regulation[J]. International Journal of Molecular Sciences, 2021, 22(4): 1892. DOI:10.3390/ijms22041892
[67]
WANG R, JING W, XIAO L Y, JIN Y K, SHEN L, ZHANG W H. The Rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor[J]. Plant Physiology, 2015, 168(3): 1076-1090. DOI:10.1104/pp.15.00298
[68]
CAMPBELL M T, BANDILLO N, AL SHIBLAWI FRA, SHARMA S, LIU K, DU Q, SCHMITZ A J, ZHANG C, VERY A A, LORENZ A J, WALIA H. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content[J]. PLoS Genetics, 2017, 13(6): e1006823. DOI:10.1371/journal.pgen.1006823
[69]
WEI H, WANG X, HE Y, XU H, WANG L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. DOI:10.15252/embj.2020105086
[70]
BASU S, KUMAR A, BENAZIR I, KUMAR G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants[J]. Physiologia Plantarum, 2021, 171(4): 502-519. DOI:10.1111/ppl.13112
[71]
PARK H J, KIM W Y, YUN D J. A new insight of salt stress signaling in plant[J]. Molecules and Cells, 2016, 39(6): 447-459. DOI:10.14348/molcells.2016.0083
[72]
王甜甜, 郝怀庆, 冯雪, 景海春. 植物HKT蛋白耐盐机制研究进展[J]. 植物学报, 2018, 53(5): 710-725. DOI:10.11983/CBB17230
WANG T T, HAO H Q, FENG X, JING H C. Research advances in the function of the high-affinity K+ transporter (HKT) proteins and plant salt tolerance[J]. Journal of Integrative Plant Biology, 2018, 53(5): 710-725. DOI:10.11983/CBB17230
[73]
HUANG H E, HO M H, CHANG H, CHAO H Y, GER M J. Over expression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa)[J]. Plant Physiology and Biochemistry, 2020, 155: 136-146. DOI:10.1016/j.plaphy.2020.07.025
[74]
周扬, 王鹏, 李雨欣. 植物耐盐分子机制研究进展[J]. 广东农业科学, 2023, 50(10): 97-109. DOI:10.16768/j.issn.1004-874X.2023.10.011
ZHOU Y, WANG P, LI Y X. Research progress on molecular mechanism of plant salt tolerance[J]. Guangdong Agricultural Sciences, 2023, 50(10): 97-109. DOI:10.16768/j.issn.1004-874X.2023.10.011
[75]
EL M H, PÉREZ H J, DE L A, VILLALTA I, ESPARTERO J, GÁMEZ A F, FERNÁNDEZ J L, BUNDÓ M, MENDOZA I, MIEULET D, LALANNE E, LEE S Y, YUN D J, GUIDERDONI E, AGUILAR M, LEIDI E O, PARDO J M, QUINTERO F J. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice[J]. Plant Physiology, 2019, 180(2): 1046-1065. DOI:10.1104/pp.19.00324
[76]
VAN Z E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71(1): 403-433.
[77]
矫金航, 张雅琳, 王赞彭, 周博阳, 刘敏敏, 喻敏, 潘婷. 水稻耐盐响应中钾运输载体的研究进展[J]. 西北植物学报, 2023, 43(10): 1791-1800. DOI:10.7606/j.issn.1000-4025.2023.10.1791
JIAO J H, ZHANG Y L, WANG Z P, ZHOU B Y, LIU M M, YU M, PAN T. Advances in potassium carriers to salt stress in rice[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(10): 1791-1800. DOI:10.7606/j.issn.1000-4025.2023.10.1791
[78]
ZEESHAN M, LU M, NAZ S, SEHAR S, CAO F, WU F. Resemblance and difference of seedling metabolic and transporter gene expression in high tolerance wheat and barley cultivars in response to salinity stress[J]. Plants-Basel, 2020, 9(4): 519. DOI:10.3390/plants9040519
[79]
KUMAR K, KUMAR M, KIM S R, RYU H, CHO Y G. Insights into genomics of salt stress response in rice[J]. Rice, 2013, 6(1): 27. DOI:10.1186/1939-8433-6-27
[80]
ALMEIDA D, OLIVEIRA M, SAIBO N. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants[J]. Genetics and Molecular Biology, 2017, 40(1): 326-345. DOI:10.1590/1678-4685-GMB-2016-0106
[81]
SOLIS C A, YONG M T, ZHOU M X, VENKATARAMAN G, SHABALA L, HOLFORD P, SHABALA S, CHEN Z H. Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza[J]. International Journal of Molecular Sciences, 2022, 23(4): 2092. DOI:10.3390/ijms23042092
[82]
曲梦宇, 许惠滨, 陈静, 梁廷敏, 韩艺娟, 陈燕琼, 张书标, 陈松彪. 水稻耐盐分子机制与分子改良[J]. 植物遗传资源学报, 2022, 23(3): 644-653. DOI:10.13430/j.cnki.jpgr.20211106002
QU M Y, XU H B, CHEN J, LIANG T M, HAN Y J, CHEN Y Q, ZHANG S B, CHEN S B. Molecular mechanisms and improvement of salinity tolerance in rice[J]. Journal of Plant Genetic Resources, 2022, 23(3): 644-653. DOI:10.13430/j.cnki.jpgr.20211106002
[83]
REDDY I N B L, KIM B K, YOON I S, KIM K H, KWON T R. Salt tolerance in rice: focus on mechanisms and approaches[J]. Rice Science, 2017, 24(3): 123-144. DOI:10.1016/j.rsci.2016.09.004
[84]
WANG H, ZHANG M S, GUO R, SHI D C, LIU B, LIN X Y, YANG C W. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12(1): 194. DOI:10.1186/1471-2229-12-194
[85]
王诗宇, 毛艇, 张丽丽, 李鑫, 刘研, 赵一洲, 倪善君, 钟顺成, 王柏秋, 张战. 水稻耐盐育种研究进展[J]. 北方水稻, 2021, 51(4): 48-51. DOI:10.16170/j.cnki.1673-6737.2021.04.015
WANG S Y, MAO T, ZHANG L L, LI X, LIU Y, ZHAO Y Z, NI S J, ZHONG S C, WANG B Q, ZHANG Z. Advances in salt tolerance breeding of rice[J]. North Rice, 2021, 51(4): 48-51. DOI:10.16170/j.cnki.1673-6737.2021.04.015
[86]
GANAPATI R K, NAVEED S A, ZAFAR S, WANG W S, XU J L. Saline-Alkali tolerance in rice: Physiological response, molecular mechanism, and QTL identification and application to breeding[J]. Rice Science, 2022, 29(5): 412-434. DOI:10.1016/j.rsci.2022.05.002
[87]
PONCE K S, MENG L, GUO L, LENG Y, YE G. Advances in sensing, response and regulation mechanism of salt tolerance in rice[J]. International Journal of Molecular Sciences, 2021, 22(5): 2254. DOI:10.3390/ijms22052254
[88]
ARIF Y, SINGH P, SIDDIQUI H, BAJGUZ A, HAYAT S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance[J]. Plant Physiology and Biochemistry, 2020, 156: 64-77. DOI:10.1016/j.plaphy.2020.08.042
[89]
HASANUZZAMAN M, RAIHAN MD R H, MASUD A A C, RAHMAN K, NOWROZ F, RAHMAN M, NAHAR K, FUJITA M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J]. International Journal of Molecular Sciences, 2021, 22(17): 9326. DOI:10.3390/ijms22179326
[90]
GUAN Q, LIAO X, HE M, LI X, WANG Z, MA H, YU S, LIU S. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress[J]. PLoS One, 2017, 12(10): e186052. DOI:10.1371/journal.pone.0186052
[91]
SOFO A, SCOPA A, NUZZACI M, VITTI A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. International Journal of Molecular Sciences, 2015, 16(12): 13561-13578. DOI:10.3390/ijms160613561
[92]
ZHANG Z G, ZHANG Q, WU J X, ZHENG X, ZHENG S, SUN X H, QIU Q S, LU T G. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses[J]. PLoS One, 2013, 8(2): e57472. DOI:10.1371/journal.pone.0057472
[93]
付娆, 张海洋, 乔鹏, 梁晓艳, 邢延富, 宋延静, 李茹霞, 李俊林, 郭洪恩, 王向誉. 蒲公英抗氧化酶基因的克隆与盐胁迫表达分析[J]. 西北农业学报, 2020, 29(11): 1720-1728. DOI:10.7606/J.issn.1004-1389.2020.11.014
FU X, ZHANG H Y, QIAO P, LIANG X Y, XING Y F, SONG Y J, LI R X, LI J L, GUO H E, WANG X Y. Cloning of antioxidant enzyme genes from taraxacum mongolicum hand-Mazz and expression analysis under salt stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(11): 1720-1728. DOI:10.7606/J.issn.1004-1389.2020.11.014
[94]
WU T M, LIN W R, KAO C H, HONG C Y. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice[J]. Plant Molecular Biology, 2015, 87(6): 555-564. DOI:10.1007/s11103-015-0290-5
[95]
LIMA MELO Y, CARVALHO F E L, MARTINS M O, PASSAIA G, SOUSA R H V, NETO M C L, MARGIS P M, SILVEIRA J A G. Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants[J]. Journal of Integrative Plant Biology, 2016, 58(8): 737-748. DOI:10.1111/jipb.12464
[96]
ZHANG Z Y, LIU H H, SUN C, MA Q B, BU H Y, CHONG K, XU Y Y. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice[J]. Journal of Plant Physiology, 2018, 229: 100-110. DOI:10.1016/j.jplph.2018.07.003
[97]
YANG A, DAI X Y, ZHANG W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(7): 2541-2556. DOI:10.1093/jxb/err431
[98]
SUN B R, FU C Y, FAN Z L, CHEN Y, CHEN W F, ZHANG J, JIANG L Q, LYU S W, PAN D J, LI C. Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu[J]. Rice, 2019, 12: 99. DOI:10.1186/s12284-019-0360-4
[99]
CUI L G, SHAN J X, SHI M, GAO J P, LIN H X. DCA1 acts as a transcriptional co-activator of DST and contributes to drought and salt tolerance in rice[J]. PLoS Genetics, 2015, 11(10): e1005617. DOI:10.1371/journal.pgen.1005617
[100]
ZHAO S S, ZHANG Q K, LIU M Y, ZHOU H P, MA C, WANG P P. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9): 4609. DOI:10.3390/ijms22094609
[101]
NAVEED S A, ZHANG F, ZHANG J, ZHENG T Q, MENG L J, PANG Y L, XU J L, LI Z K. Identifcation of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses[J]. Scientific Reports, 2018, 8: 6505. DOI:10.1038/s41598-018-24946-3
[102]
WANG W S, ZHAO X Q, LI M, HUANG L Y, XU J L, ZHANG F, CUI Y R, FU B Y, LI Z K. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J]. Journal of Experimental Botany, 2016, 67(1): 405-419. DOI:10.1093/jxb/erv476
[103]
HUANG Y, JIAO Y, XIE N K, GUO Y M, ZHANG F, XIANG Z P, WANG R, WANG F, GAO Q M, TIAN L F, LI D P, CHEN L B, LIANG M Z. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice[J]. Plant Science, 2019, 287: 110188. DOI:10.1016/j.plantsci.2019.110188
[104]
WU T Y, URANO D. Genetic and systematic approaches toward G protein-coupled abiotic stress signaling in plants[J]. Frontiers in Plant Science, 2018, 9: 1378. DOI:10.3389/fpls.2018.01378
[105]
LUO X, DAI Y, ZHENG C, YANG Y, CHEN W, WANG Q, CHANDRASEKARAN U, DU J, LIU W, SHU K. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress[J]. New Phytologist, 2021, 229(2): 950-962. DOI:10.1111/nph.16921
[106]
SZYMAŃSKA K, POLKOWSKA-KOWALCZYK L, LICHOCKA M, MASZKOWSKA J, DOBROWOLSKA G. SNF1-related protein kinases SnRK2.4 and SnRK2.10 modulate ROS homeostasis in plant response to salt stress[J]. International Journal of Molecular Sciences, 2019, 20(1): 143. DOI:10.3390/ijms20010143
[107]
YANG C, MA B, HE S J, XIONG Q, DUAN K X, YIN C C, CHEN H, LU X, CHEN S Y, ZHANG J S. Maohuzi6/Ethylene Insensitive3-LIKE1 and Ethylene Insensitive3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015, 169(1): 148-165. DOI:10.1104/pp.15.00353
[108]
才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. DOI:10.3724/SP.J.1006.2023.22008
CAI X X, HU B S, SHEN Y, WANG Y, CHEN Y, SUN M Z, JIA B W, SUN X L. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice[J]. Acta Agronomica Sinica, 2023, 49(2): 561-569. DOI:10.3724/SP.J.1006.2023.22008
[109]
李丹丹, 林蓉, 李新国, 郑月萍. AtJAR1基因在拟南芥耐盐性中的功能分析[J]. 浙江农林大学学报, 2022, 39(5): 998-1009. DOI:10.11833/j.issn.2095-0756.20210742
LI D D, LIN R, LI X G, ZHENG Y P. Functional analysis of AtJAR1 gene in salt tolerance of Arabidopsis thaliana[J]. Journal of Zhejiang A&F University, 2022, 39(5): 998-1009. DOI:10.11833/j.issn.2095-0756.20210742
[110]
JIANG K, MOE-LANGE J, HENNET L, FELDMAN L J. Salt Stress affects the redox status of arabidopsis root meristems[J]. Frontiers in Plant Science, 2016, 7: 81. DOI:10.3389/fpls.2016.00081
[111]
IGLESIAS M J, TERRILE M C, WINDELS D, LOMBARDO M C, BARTOLI C G, VAZQUEZ F, ESTELLE M, CASALONGUE C A. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis[J]. PLoS One, 2014, 9(9): e107678. DOI:10.1371/journal.pone.0107678
[112]
WANG J, QIN H, ZHOU S R, WEI P C, ZHANG H E, ZHOU Y, MIAO Y C, HUANG R F. The Ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice[J]. The Plant Cell, 2020, 32(2): 414-428. DOI:10.1105/tpc.19.00593
[113]
ZHOU J H, LI Z Y, XIAO G Q, ZHAI M J, PAN X W, HUANG R F, ZHANG H W. CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice[J]. Journal of Experimental Botany, 2020, 71(3): 1160-1170. DOI:10.1093/jxb/erz491
[114]
SHAN C, MEI Z L, DUAN J L, CHEN H Y, FENG H F, CAI W M. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress[J]. PLoS One, 2014, 9(1): e87110. DOI:10.1371/journal.pone.0087110
[115]
ZHU N, CHENG S F, LIU X Y, DU H, DAI M Q, ZHOU D X, YANG W J, ZHAO Y. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice[J]. Plant Science, 2015, 236: 146-156. DOI:10.1016/j.plantsci.2015.03.023
[116]
YU Z P, DUAN X B, LUO L, DAI S J, DING Z J, XIA G M. How plant hormones mediate salt stress responses[J]. Trends in Plant Science, 2020, 25(11): 1117-1130. DOI:10.1016/j.tplants.2020.06.008
[117]
XING L, ZHAO Y, GAO J H, XIANG C B, ZHU J K. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth[J]. Scientifi c Reports, 2016, 6(1): 27177. DOI:10.1038/srep27177
[118]
ZHANG F, TAO W P, SUN R Q, WANG J X, LI C L, KONG X P, TIAN H Y, DING Z J. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana[J]. PLoS Genetics, 2020, 16(2): e1008044. DOI:10.1371/journal.pgen.1008044
[119]
LIU S H, ZHANG P Y, LI C C, XIA G M. The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signalling pathway[J]. Plant Science, 2019, 280: 1-11. DOI:10.1016/j.plantsci.2018.11.004
[120]
SHAH F. Overexpression of the stress-inducible SsMAX2 promotes drought and salt resistance via the regulation of Redox homeostasis in Arabidopsis[J]. International Journal of Molecular Sciences, 2019, 20: 837. DOI:10.3390/ijms20040837
[121]
LI Q Q, XU F, CHEN Z, TENG Z F, SUN K, LI X C, YU J Y, ZHANG G X, LIANG Y, HUANG X H, DU L, QIAN Y W, WANG Y C, CHU C C, TANG J Y. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation[J]. Nature Plants, 2021, 7(8): 1108-1118. DOI:10.1038/s41477-021-00959-1
[122]
KRISHNAMURTHY S L, PUNDIR P, WARRAICH A S, RATHOR S, LOKESHKUMAR B M, SINGH N K, SHARMA P C. Introgressed saltol QTL lines improves the salinity tolerance in rice at seedling stage[J]. Frontiers Plant Science, 2020, 11: 833. DOI:10.3389/fpls.2020.00833

(责任编辑     崔建勋)