广东农业科学  2023, Vol. 50 Issue (12): 62-72   DOI: 10.16768/j.issn.1004-874X.2023.12.006.
0

文章信息

引用本文
陆展华, 刘维, 王石光, 巫浩翔, 王晓飞, 陈浩, 潘朝阳, 何秀英. 国内外旱稻研究现状及对广东的启示[J]. 广东农业科学, 2023, 50(12): 62-72.   DOI: 10.16768/j.issn.1004-874X.2023.12.006
LU Zhanhua, LIU Wei, WANG Shiguang, WU Haoxiang, WANG Xiaofei, CHEN Hao, PAN Zhaoyang, HE Xiuying. Research Status of Upland Rice Worldwide and Its Enlightenment to Guangdong Province[J]. Guangdong Agricultural Sciences, 2023, 50(12): 62-72.   DOI: 10.16768/j.issn.1004-874X.2023.12.006

基金项目

广东省农业科学院中青年学科带头人(金颖之星)培养项目(R2023PY-JX003);广东省现代农业产业技术体系专项(2023KJ105);广东省乡村振兴战略专项资金种业振兴项目(2022-NPY-00-001);广东省水稻育种新技术重点实验室项目(2023B1212060042)

作者简介

陆展华(1987—),男,博士,副研究员,研究方向为水稻抗病耐逆遗传育种,E-mail:aaslzh@163.com.

通讯作者

何秀英(1974—),女,博士,研究员,研究方向为水稻遗传育种,E-mail:hexiuying@gdaas.cn.

文章历史

收稿日期:2023-10-30
国内外旱稻研究现状及对广东的启示
陆展华 , 刘维 , 王石光 , 巫浩翔 , 王晓飞 , 陈浩 , 潘朝阳 , 何秀英     
广东省农业科学院水稻研究所 / 农业农村部华南优质稻遗传育种重点实验室(部省共建)/广东省水稻育种新技术重点实验室,广东 广州 510640
摘要:旱稻是水稻长期驯化演变形成的一种生态类型,主要分布在夏季雨水稳定但缺乏灌溉条件的旱地、山坡地。目前,全世界旱稻种植面积约1 900 万 hm2,约占水稻栽培总面积的12.7%。旱稻在我国具有丰富的资源和悠久的种植历史,在国内不同稻作区均有分布。农业是重要的温室气体排放源之一,其中水稻种植过程中需要建立较长时期的水层,排放的温室气体约占农业的16%。而旱稻种植在减少稻田温室气体排放中发挥着重要作用,对保障国家粮食安全和国家碳达峰、碳中和目标的实现具有重要意义。由于光温条件和降雨量总体相对平衡,广东各生态区以双季水稻种植为主,旱稻发展相对滞后。随着农村劳动力减少、水资源短缺,以及高温干旱等极端天气的不断发生,广东乃至华南稻作区对旱稻品种的需求逐年增加。本文介绍了国内外旱稻抗旱机制、品种培育及配套技术研究进展,对广东旱稻研究和种植现状进行分析,并提出了广东旱稻研究的建议,以期为广东旱稻品种的分子育种、低碳栽培技术的研发提供参考。
关键词旱稻    育种    干旱    低碳    栽培技术    
Research Status of Upland Rice Worldwide and Its Enlightenment to Guangdong Province
LU Zhanhua , LIU Wei , WANG Shiguang , WU Haoxiang , WANG Xiaofei , CHEN Hao , PAN Zhaoyang , HE Xiuying     
Rice Research Institute, Guangdong Academy of Agricultural Science / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
Abstract: Upland rice, an ecological type formed by the long-term domestication of rice, is mainly distributed in dry land and hilly land with stable summer rainfall but insufficient irrigation conditions. Currently, the cultivated area of upland rice in the world is about 19 million hm2, accounting for about 12.7% of the total cultivated rice area. With rich resources and a long planting history, upland rice is distributed in different rice growing areas in China. Agriculture is one of the most important sources of greenhouse gas emissions, in which the long-term water layer needs to be established in the process of rice cultivation, accounting for about 16% of the greenhouse gas emissions from agriculture. Many studies have shown that planting upland rice plays an important role in reducing greenhouse gas emissions from paddy fields, which is of great significance for ensuring national food security and achieving national carbon peak and carbon neutrality goals. Due to the relative balance of light, temperature and rainfall in Guangdong Province, double-croping rice is the main planting pattern in each ecological region, and the development of upland rice is relatively lagging. With the decrease of the rural labor force, the shortage of water resources and the continuous occurrence of extreme weather such as high temperature and drought in Guangdong and South China, the market demand for upland rice varieties has increased year by year. This review introduces the drought resistance mechanism, breeding and supporting technologies of upland rice in China and abroad, analyzes the research and planting status of upland rice in Guangdong, and puts forward suggestions on upland rice researches, providing references for molecular breeding and low-carbon cultivation technology of upland rice varieties in Guangdong Province.
Key words: upland rice    breeding    drought    low carbon    cultivation technology    

旱稻又称陆稻,被称誉为“21世纪新粮源”,由水稻在无水层的旱地条件下长期驯化演变形成的一种生态类型,也是亚洲栽培稻中一种特殊的生态类型。旱稻主要分布在夏季雨水稳定但缺乏灌溉条件的旱地、山坡地,或春旱而夏秋易涝的低洼地区。据统计,全世界旱稻种植面积约1 900 万 hm2,占栽培稻总面积的12.7%。旱稻品种的茎、叶粗壮繁茂,叶片较宽,根系发达、根毛多、根的渗透压和叶片的细胞质浓度较高,耐旱、耐热,吸水力强[1-2]。旱稻对节约水资源、保护环境和提高资源利用效率的作用十分明显。旱稻种植并非不需要灌溉,其需水的关键时期为分蘖期、幼穗分化期、孕穗期、抽穗期和灌浆期等。据测定,旱稻每生产1 g干物质需水300 g,全生育期需水400~500 m3,而移栽水稻全生育期需水800~1 000 m3,旱稻比水稻省水50%[3]。旱稻种植可有效降低粮食主产区水源不足的压力,同时还能充分利用坡地和水源欠缺土地,扩大粮食种植面积,进一步挖掘条件较差的岗地、缺水田、望天田的潜力,提高产量与土地利用率。

农业是重要的温室气体排放源之一,我国农业排放的温室气体约占温室气体排放总量的5.4%,其中水稻种植过程中需要建立较长时期的水层,排放的温室气体约占农业的16%[4]。在保持水稻高产、保障粮食安全的同时固碳减排、降低单位产量的碳排放量、实现低碳高产,是水稻栽培技术发展的必然趋势[5]。对长江中下游“早稻-晚稻”“小麦-中稻”“油菜-中稻”和“油菜-旱稻”4种稻田利用模式的研究表明,在“油菜-旱稻”模式中,旱稻季表现为碳损失,但油菜季固定的碳量弥补了旱稻季引起的碳损失,“油菜-旱稻”模式是碳排放相对最低的利用模式,而“早稻-晚稻”模式是碳排放相对最高的利用模式[6]。基于稻田CH4和N2O排放量及其全球增温潜势计算,华南四省(区)稻田每年CH4和N2O排放的总温室效应为40.39×1012 g(其中广东高达16.66×1012 g),占全国稻田的21.43%[7]。因此,发挥旱稻在减少稻田温室气体排放中的积极作用,对于保障国家粮食安全和国家碳达峰、碳中和目标的实现具有重要意义。

水稻旱直播免除了传统育秧、移栽等工序,是直接将种子播于大田的一种轻简化栽培技术,具有省工省时、节约成本、节省劳动量、节水、适合大规模机械化播种和收获作业等优点,在劳动力短缺、泡田插秧季节水资源匮乏的条件下具有较好的应用前景[8-9]。与淹水灌溉相比,旱作处理可以显著提高叶片SPAD值和齐穗期净光合速率,促进地上部干物质的积累,增加茎秆和叶片干物质转运量和对籽粒贡献率,进而提高水稻有效穗和千粒重,实现粮食增产[10]。具有较强抗旱能力的旱稻品种可以进一步发挥旱直播的优势,推进轻简化栽培,降低劳动强度,实现农业节本增效。

旱稻品种的推广应用不仅适合干旱缺水地区水稻产业的发展,对水资源相对充沛区域降低稻田碳排放、减少面源污染、发展轻简化栽培、应对极端干旱天气的发生也具有重要的借鉴意义。近年来,国内外旱稻品种的培育和推广取得了较好发展,为低碳农业的发展奠定了良好基础。长期以来,广东省旱稻品种的培育和配套技术的研发相对滞后,难以满足市场需求。因此,本文对当前旱稻的抗(耐)旱机制研究、品种培育和配套技术研发现状等方面进行阐述,并对广东旱稻的发展提出对策,以期为广东旱稻品种的分子育种、低碳栽培技术的研发提供参考。

1 国内外旱稻研究现状 1.1 水稻抗旱机制研究进展

抗旱机制研究是旱稻品种改良的重要基础。近年来,国内外研究团队对水、旱不同类型材料进行研究,利用连锁分析、GWAS及表达谱分析等多种技术手段克隆了多个具有重要育种价值的抗旱基因[11-14]。进一步通过水稻和旱稻基因组等比较研究,发掘旱稻抗旱基因,解析水、旱稻基因组的遗传分化[15]。水稻气孔保卫细胞可随着细胞内膨胀压的变化进行开闭运动,当受到干旱胁迫时,气孔关闭,以防止体内水分散失,但同时也会降低光合速率并抑制植物生长[16-17]。在生理生化方面,抗旱机制主要表现为蛋白酶调节、糖类物质积累、渗透调节、有毒物质降解等多个方面[18-19]。目前,关于水稻(包括旱稻)抗旱机制研究取得了较好进展,已定位克隆多个抗旱相关基因(表 1)。

表 1 已定位克隆的主要水稻抗旱基因 Table 1 Cloned drought-tolerant genes in rice

植物激素是水稻干旱胁迫的重要信号分子[20-21]。脱落酸(Abscisic acid,ABA)是植物主要内源激素之一,是一种植物体内合成的具有倍半萜结构的生长调节物质,具有控制植物生长、抑制植物萌发及促进衰老等效应[22-23]。ABA信号和水力信号是植物调节气孔开闭的主要途径,近年来有大量研究表明干旱胁迫下气孔关闭与植株水力导度的降低密切相关[24-25]。水稻OsSKIPa受各种非生物胁迫和激素处理诱导,过量表达OsSKIPa基因的转基因植株极大提高了苗期和生殖生长期对ABA和干旱胁迫的耐受性。进一步研究表明,过量表达OsSKIPa的转基因植株在干旱胁迫下清除活性氧的能力显著提高,胁迫相关基因的表达也显著提高,从而正调控水稻的胁迫耐受性。研究表明,聚乙二醇(PEG)处理会激活OsDT11的表达,OsDT11过表达植株的ABA浓度增加,气孔密度降低,耐旱性显著增强。抑制OsDT11表达会导致植株对干旱的敏感性增加。而在ABA不敏感突变体Osbzip23Os2H16-RNAi株系中,OsDT11的表达受到抑制。上述结果表明,OsDT11介导的耐旱性可能依赖于ABA信号通路[26]。研究结果显示,水稻通过TAD1介导ABA通路与植物生长相关的赤霉素途径联动,在干旱胁迫下协调生长和生存[27]。乙烯是干旱胁迫的负调控因子,过量表达OsDERF1(OE)导致水稻在幼苗期对干旱的耐受性降低,而OsDERF1的表达抑制株系(RI)幼苗期和分蘖期的抗旱性增强。外施乙烯前体ACC可以恢复OE株系干旱敏感的表型,说明乙烯的产生对水稻干旱应答具有重要贡献[28]。此外,水稻对干旱的响应还涉及纤维素合成、植物体内活性氧(Reactive oxygen species,ROS)等多种因素的影响[29-34]

1.2 旱稻品种选育研究进展

旱稻在我国栽培历史悠久、资源丰富,据水稻中期库稻种资源记录,我国旱稻资源约5 000余份,且不断有新的旱稻品种通过各级品种审定(表 2)。旱稻在整个稻作生产中的比重不大、仅占6.62%,集中分布在云南、广西、贵州和海南等四省(区)[60-61]。云南省是我国旱稻品种最丰富的地区,其中籼、粳,粘、糯,早、中、晚熟品种均有[62-64]。长江中下游稻区尤其是稻麦轮作区是国内重要的旱稻(或水稻旱作)区。其中湖北省旱稻种植面积约占全省稻作面积的3.05%。旱稻品种一般选择生育期适中、抗旱性强、产量高且品质优的综合性状优良的水稻品种,主要品种有旱优113、旱优73、旱优3号。同时也发展了旱直播、旱稻-小麦/油菜轮作等多种耕作制度[1]。安徽省旱稻种植区主要分布在沿淮地区等季节性干旱区域,地势相对低洼,遇到雨水多的天气易发生渍涝[7]。安徽省农业科学院水稻研究所等单位培育出绿旱1号及绿旱1S、旱两优1号、绿旱粳1号等一批耐旱新品系(组合)[65]。河南旱稻发展以粳稻为主,培育出郑旱2号等系列旱稻品种[66]。华南地区光温条件充足、雨水充沛,不仅是水稻生产的有利条件,也为旱稻的种植带来便利。海南具有悠久的旱稻种植历史,特有的旱稻资源山栏稻分布于保亭、白沙和乐东等山坡地,盛产于五指山地区,具有抗旱、耐热、抗病、抗虫等优良特性[67-70]。山栏稻是点播直播,主要种植在山坡地,大多为感光品种,产量低,加之种植规模小,品种老化,种资源流失严重。近年来,海南省农业科学院与西双版纳植物园联合选育中科西陆2号等旱稻新品种[71]

表 2 近10年通过各级审定的旱稻品种 Table 2 Varieties of upland rice approved at various levels in the past decade

近年来,上海市农业生物基因中心等单位提出既具有水稻高产优质特性,又具有旱稻节水抗旱特性的一种新的栽培稻类型——节水抗旱稻,整合了现代优良水稻与旱稻品种的优良特性[72]。节水抗旱稻的节水、抗旱和耐直播能力较强,配套“旱直播旱管”等绿色栽培模式,可在水田不淹水栽培,大幅度节约灌溉用水,减少面源污染和甲烷排放,也可在旱地或山坡地种植,拓展水稻种植空间。目前已培育抗旱不育系沪旱1A、沪旱5A、沪旱7A等不育系及旱优73等节水抗旱稻杂交组合,能够节水50% 以上,减少甲烷排放90% 以上[73]

由于灌溉不足和雨水分布不匀等原因,目前旱稻已成为南亚和东南亚的三大稻作类型之一,并成为拉丁美洲和西非国家的主要稻作类型。国外特别是一些旱稻主要生产国家以及国际水稻研究所(IRRI)、西非水稻发展协会(WARDA)等国际机构一直都十分重视旱稻品种的选育。我国引种的国外旱稻品种多数外观品质好,直链淀粉含量在17% ~ 22%之间,并筛选出BR203-26-2、CH2、IDSA64、IR66421-105-1-1-1、IRGA369-28-2-4-1F-5、IRGA659-1-2-2-2、IRGA660-3-13-5-3、PANAMA1048、RR2-6、RR272-18-832、IAPAR9等优良旱稻品种(品系)供国内旱稻育种利用[74-75]

2 广东旱稻发展现状

据记载,早在1 300多年前,粤北连山、连南等山区的少数民族聚居地就已种植旱稻,即“太公禾”“旱禾”“岗禾”“岭禾”“山禾” [76]。然而,这些品种产量低,逐渐被淘汰,一些抗旱性较好的品种被作为旱作水稻,在旱地或干湿地直播,全生育期旱管旱长,无需建立水层,全靠自然降雨或仅辅以少量灌溉。而广东丰产稳产型耐旱品种的培育晚于周边省份,近年来通过国内审定的旱稻品种以杂交稻为主,而且集中在安徽、云南、上海、广西等区域,广东目前仍没有该类型品种通过审定。

2.1 种植需求攀升,品种缺乏严重

由于广东光温条件和降雨量总体相对平衡,各生态区以双季水稻种植为主。但近年来,随着高温、干旱等极端天气的不断出现,广东水稻生产形势严峻,粤中及沿海等传统的双季稻区经常面临春旱导致播种或插秧困难。此外,在撂荒耕地整治、旱改水等政策的驱动下,市场对旱稻品种的需求逐年增加。近年来,紫金县农技推广中心等单位通过引进旱优73、旱优113等节水抗旱稻品种进行试验示范,取得一定的市场反响。但这类品种千粒重较大,难以满足大米加工企业的需求,急需适宜广东气候条件和市场需求的旱稻新品种。

2.2 耕种方式传统,配套技术滞后

直播是一种重要的水稻轻简化种植方式,具有省工、省时、节本和显著提高水稻种植效益等优点,在国内外应用广泛。生产上主要有湿润直播、水直播和旱直播3种方式[77-78]。针对国内现有旱直播机械存在的机型单一、播种均匀性和可靠性差等问题,华南农业大学罗锡文教授团队提出了一种同步开沟施肥的水稻精量旱穴直播技术,对配套机具的单体仿形机构、播种机液压动力传动系统和电流比例控制株距调节系统进行了研究和分析,研制了2BDH系统水稻精量旱穴直播机,在国内得到大面积推广应用。与移栽种植方式相比,采用精量旱穴直播技术播种的水稻生长成行成穴,通风透气采光性能好,产量高,生产效率高,而且省去了育秧、拔秧、运秧和插秧等生产工序,可节省人工成本2 250~3 000元/hm2 [79]。2010年以来,广东省农业科学院水稻研究所提出并研发了以低投入、低排放、低污染、高产量(即“三低一高”)为特征的华南双季稻低碳高产栽培技术,并列为广东省农业主推技术[80]。然而这些技术的研发主要基于水稻不同种植模式开展的,缺乏对旱稻栽培技术的研发。

3 广东旱稻发展策略

广东常年降雨量在2 114.3 mm左右,早季雨水量较大,雨水灌溉相对充足。因此,早季可以充分利用降水特点,发展旱稻种植,可以实现雨养为主、节水灌溉,有效减少农业用水、水土流失及降低面源污染。因此,针对广东气候特点,可对极端干旱气候、山区缺水和粮食主销区粮食供给能力开展旱稻研究和推广应用,作为当前优质稻品种的必要补充。

3.1 开展主导品种抗(耐)旱性筛选

当前主推的水稻品种大多适应性广、抗病耐逆性强,产生了一定社会效应,筛选出的耐旱品种可以立即开展示范推广。如粤农丝苗、粤禾丝苗等品种,其茎秆粗壮抗倒伏、株型协调、群体通透、抗病性强、耐逆性强,连续多年成为广东省农业主导品种,目前已通过多省审定或引种备案,并且在湖北、安徽等区域开展旱直播等多种栽培模式种植,出苗整齐,丰产性好,已广泛应用于旱改水田块种植,同时也可以作为旱稻品种选育的优良亲本[81-84]。将这类品种配套节水栽培或低碳种植模式,可以降低对水资源的需求,实现节水减排目标,短期内满足市场对旱稻品种的种植需求。

3.2 广泛开展资源抗旱性鉴评

广东省农业科学院水稻研究所等科研院所具有国家种质资源圃,从国内不同区域收集了一批抗旱种质资源,在品种、资源等方面具有较强优势。通过建立抗旱性鉴定条件平台,利用表型组学等[85]对现有资源材料(包括野生稻)进行抗旱性鉴定,可加速挖掘一批抗病抗旱种质资源,并开展利用。

3.3 加速旱稻品种(配套系)培育

随着分子生物学、基因组学的发展,OsSKIPaDROT1等抗旱基因已定位[13-14, 86],以当前推广的综合性状优良的品种资源为底盘材料,以适应轻简化栽培(旱直播)等为主要目标,通过全基因组选择等方式,快速培育聚合丰产、优质、抗稻瘟病(Pi1Pi2Pigm等)[87-89]、抗白叶枯病(Xa5Xa23等)[90-91]、抗稻飞虱(Bph18等)[92]等性状相关基因的优质抗旱稻常规品种和杂交稻配套系,以适应不同生态区域的种植需求。利用已鉴定的耐旱型不育系进行广泛测配,培育适应华南气候条件、满足广东消费市场需求的旱稻新品种。同时,增设抗旱品种区域试验,提高旱稻品种准入标准,保证旱稻有序发展。

3.4 强化旱稻配套技术理论研发

发展旱稻,品种是核心,配套栽培管理技术是关键。广东旱稻发展起步晚,相关的技术体系还不够完善。广东全年雨量充沛但主要集中在上半年,早季可以利用充沛的雨水发展以雨养为主的旱稻栽培管理模式;晚季根据各地区降雨条件,发展机械化(包括无人机飞播)旱直播、穴直播。因此,今后应围绕轻简化、绿色、低碳目标,从生理学和分子生物学等方面开展水稻、旱稻的比较分析,研究旱稻的节水、减碳与稳产机理。

参考文献(References):
[1]
宋伟丰, 潘亚清, 翟喜海, 李宝英, 焦占力, 李志勇, 韦庆慧. 旱稻研究进展与栽培技术初探[J]. 中国野生植物资源, 2021, 40(12): 55-58. DOI:10.3969/j.issn.1006-9690.2021.12.011
SONG W F, PAN Y Q, ZHAI X H, LI B Y, JIAO Z L, LI Z Y, WEI Q H. Research progress and cultivation techniques of upland rice[J]. Chinese Wild Plant Resources, 2021, 40(12): 55-58. DOI:10.3969/j.issn.1006-9690.2021.12.011
[2]
李萍, 曹鹏, 江颂颂, 张建设, 曹凑贵. 湖北省旱稻种植现状及其发展前景[J]. 湖北农业科学, 2020, 59(8): 17-20, 24. DOI:10.14088/j.cnki.issn0439-8114.2020.08.003
LI P, CAO P, JIANG S S, ZHANG J S, CAO C G. Current status and development prospect of upland rice planting in Hubei Province[J]. Hubei Agricultural Sciences, 2020, 59(8): 17-20, 24. DOI:10.14088/j.cnki.issn0439-8114.2020.08.003
[3]
仲吉轩, 李长秋. 旱稻的优势及主要栽培技术[J]. 安徽农学通报, 2011, 17(14): 298-299.
ZHONG J X, LI C Q. Advantages and main cultivation techniques of upland rice[J]. Anhui Agriculture Science Bulletin, 2011, 17(14): 298-299.
[4]
陈松文, 刘天奇, 曹凑贵, 凌霖, 王斌. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3-12. DOI:10.13300/j.cnki.hnlkxb.2021.03.002
CHEN S W, LIU T Q, CAO C G, LING L, WANG B. Situation of carbon neutrality in rice production and techniques for low-carbon rice farming[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3-12. DOI:10.13300/j.cnki.hnlkxb.2021.03.002
[5]
管大海, 张俊, 王卿梅, 张燕萍, 周玮, 黄波, 赵欣, 王利, 张卫建, 王全辉. 气候智慧型农业及其对我国农业发展的启示[J]. 中国农业科技导报, 2017, 19(10): 7-13. DOI:10.13304/j.nykjdb.2017.0011
GUAN D H, ZHANG J, WANG Q M, ZHANG Y P, ZHOU W, HUANG B, ZHAO X, WANG L, ZHANG W J, WANG Q H. Climate-smart agriculture and its enlightenment to agricultural development of China[J]. Journal of Agricultural Science and Technology, 2017, 19(10): 7-13. DOI:10.13304/j.nykjdb.2017.0011
[6]
蒋梦蝶. 长江中游地区四种稻田利用模式的甲烷排放特征及碳减排潜力研究[D]. 武汉: 华中农业大学, 2023. DOI: 10.27158/d.cnki.ghznu.2022.000033.
JIANG M D. Characteristics of soil methane emissions and carbonmitigation potential of four rice cropping patterns in the middle reaches of the Yangtze River[D]. Wuhan: Huazhong Agricultural University, 2023. DOI: 10.27158/d.cnki.ghznu.2022.000033.
[7]
钟旭华, 梁开明, 潘俊峰, 傅友强, 胡香玉, 黄农荣, 刘彦卓, 胡锐, 李妹娟, 王昕钰, 叶群欢, 尹媛红. 华南双季稻低碳高产栽培技术研究进展[J]. 华南农业大学学报, 2023, 44(6): 867-874. DOI:10.7671/j.issn.1001-411X.202306011
ZHONG X H, LIANG K M, PAN J F, FU Y Q, HU X Y, HUANG N R, LIU Y Z, HU R, LI M J, WANG X Y, YE Q H, YIN Y H. Research progress on low-carbon and high-yield cultivation technology for double-cropping rice in South China[J]. Journal of South China Agricultural University, 2023, 44(6): 867-874. DOI:10.7671/j.issn.1001-411X.202306011
[8]
许必兴. 水稻机械旱直播技术研究[J]. 农业技术与装备, 2022, 73(2): 73-74.
XU B X. Technical operation specification for dry direct seeding machinery of rice[J]. Agricultural Technology & Equipment, 2022, 73(2): 73-74.
[9]
辛明金, 任文涛, 宋玉秋, 蒋圣田, 曾山, 罗锡文. 旱直播对水稻生长及产量的影响[J]. 沈阳农业大学学报, 2014, 45(2): 175-179. DOI:10.3969/j.issn.1000-1700.2014.02.010
XIN M J, REN W T, SONG Y Q, JIANG S T, ZENG S, LUO X W. Effect of rice direct seeding on growth and yield[J]. Journal of Shenyang Agricultural University, 2014, 45(2): 175-179. DOI:10.3969/j.issn.1000-1700.2014.02.010
[10]
杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. DOI:10.16819/j.1001-7216.2023.220810
YANG X L, WANG B, WANG B F, ZHANG Z S, ZHANG Z L, YANG L T, CHENG J P, LI Y. Effects of different water management on yield and rice quality of dry-seeded rice[J]. Chinse Journal Rice Science, 2023, 37(3): 285-294. DOI:10.16819/j.1001-7216.2023.220810
[11]
张玉, 冷海楠, 曹宏杰, 徐明怡. 干旱胁迫对植物的影响研究[J]. 黑龙江科学, 2022, 13(14): 22-24, 47.
ZHANG Y, LENG H N, CAO H J, XU M Y. Study on the influence of drought stress on botany[J]. Heilongjiang Science, 2022, 13(14): 22-24, 47.
[12]
杜娟, 钟巧芳, 殷富有, 刘丽, 张敦宇, 李松强, 付慧仙, 杨得正, 江慧, 郑洪健, 肖素勤. 水稻抗旱性鉴定研究进展及其展望[J]. 江西农业学报, 2023, 35(3): 25-29, 36. DOI:10.19386/j.cnki.jxnyxb.2023.03.005
DU J, ZHONG Q F, YIN F Y, LIU L, ZHANG D Y, LI S Q, FU H X, YANG D Z, JIANG H, ZHENG H J, XIAO S Q. Research progress and prospect of drought resistance identification in rice[J]. Acta Agriculturae Jiangxi, 2023, 35(3): 25-29, 36. DOI:10.19386/j.cnki.jxnyxb.2023.03.005
[13]
WANG Y, JIANG C, ZHANG X, YAN H, YIN Z, SUN X, GAO F, ZHAO Y, LIU W, HAN S, ZHANG J, ZHANG Y, ZHANG Z, ZHANG H, LI J, XIE X, ZHAO Q, WANG X, YE G, LI J, MING R, LI Z C. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding[J]. Plant Biotechnology Journal, 2023, 1-16. DOI:10.1111/pbi.14215
[14]
HOU X, XIE K, YAO J, QI Z, XIONG L. A homolog of human skiinteracting protein in rice positively regulates cell viability and stress tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6410-6415. DOI:10.1073/pnas.0901940106
[15]
徐凯, 周立国, 余舜武, 陈守俊, 马孝松, 楼巧君, 刘鸿艳, 廖志刚, 夏辉, 刘灶长, 陈亮, 罗利军. 栽培稻响应干旱胁迫的生理及分子调控机制[J]. 上海农业学报, 2022, 38(4): 56-65. DOI:10.15955/j.issn1000-3924.2022.04.07
XU K, ZHOU L G, YU S W, CHEN S J, MA X S, LOU Q J, LIU H Y, LIAO Z G, XIA H, LIU Z C, CHEN L, LUO L J. Physiological and molecular regulation mechanism of response to drought stress in cultivated rice[J]. Acta Agriculturae Shanghai, 2022, 38(4): 56-65. DOI:10.15955/j.issn1000-3924.2022.04.07
[16]
凌祖铭, 李自超, 余荣, 穆平. 水旱栽培条件下水、陆稻品种产量和生理性状比较[J]. 中国农业大学学报, 2002, 7(3): 13-18.
LING Z M, LI Z C, YU R, MU P. Comparison of yield and physiological characters between upland rice and paddy rice cultivars under submerged and rain-fed conditions[J]. Journal of China Agricultural University, 2002, 7(3): 13-18.
[17]
ZHU C Q, YE Y X, HUANG Y F, YING J F, SHEN Z C. Droughttolerant rice at molecular breeding eras: An emerging reality[J/OL]. Rice Science[2023-11-11]. https://www.sciencedirect.com/science/article/pii/S1672630823001130.
[18]
王莉, 钱前, 张光恒. 水稻抗旱基因调控机制及其分子育种利用[J]. 分子植物育种, 2014, 12(5): 1027-1033. DOI:10.13271/j.mpb.012.001027
WANG L, QIAN Q, ZHANG G H. Regulation mechanism of droughtresistance genes and its molecular breeding utilization in rice (Oryza sativa L.)[J]. Molecular Plant Breeding, 2014, 12(5): 1027-1033. DOI:10.13271/j.mpb.012.001027
[19]
汪本福, 黄金鹏, 葛双桃, 程建平, 赵锋, 陈少愚, 李阳. 水稻高效节水技术及抗旱生理机制研究[J]. 湖北农业科学, 2016, 55(24): 6347-6352. DOI:10.14088/j.cnki.issn0439-8114.2016.24.007
WANG B F, HUANG J P, GE S T, CHENG J P, ZHAO F, CHEN S Y, LI Y. Study on high efficient water saving technique and physiological mechanism of drought resistance in rice[J]. Hubei Agricultural Sciences, 2016, 55(24): 6347-6352. DOI:10.14088/j.cnki.issn0439-8114.2016.24.007
[20]
张明菊, 朱莉, 夏启中. 植物激素对胁迫反应调控的研究进展[J]. 湖北大学学报(自然科学版), 2021, 43(3): 242-253, 263.
ZHANG M J, ZHU L, XIA Q Z. Research progress on the regulation of plant hormones to stress responses[J]. Journal of Hubei University (Natural Science), 2021, 43(3): 242-253, 263.
[21]
杨建昌, 展明飞, 朱宽宇. 水稻绿色性状形成的生理基础[J]. 生命科学, 2018, 30(10): 1137-1145. DOI:10.13376/j.cbls/2018137
YANG J C, ZHAN M F, ZHU K Y. Physiological bases for the formation of green traits in rice[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1137-1145. DOI:10.13376/j.cbls/2018137
[22]
项洪涛, 李琬, 何宁, 王雪扬, 曹大为, 曹良子, 唐晓东, 李一丹. 外源脱落酸(ABA)调节植物抗旱机制的研究进展[J]. 东北农业科学, 2022, 47(5): 37-41. DOI:10.16423/j.cnki.1003-8701.2022.05.008
XIANG H T, LI W, HE N, WANG X Y, CAO D W, CAO L Z, TANG X D, LI Y D. Research progress on exogenous abscisic acid(ABA) regulating plant drought resistance[J]. Journal of Northeast Agricultural Sciences, 2022, 47(5): 37-41. DOI:10.16423/j.cnki.1003-8701.2022.05.008
[23]
郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J/OL]. 中国水稻科学, 1-19[2023-12-09]. http://kns.cnki.net/kcms/detail/33.1146.S.20231205.1345.002.html.
GUO Z, ZHANG Y B. Research progress in physiological, biochemical response and molecular regulation of drought resistance in rice[J/OL]. Chinese Journal of Rice Science, 1-19[2023-12-09]. http://kns.cnki.net/kcms/detail/33.1146.S.20231205.1345.002.html.
[24]
郭贵华, 刘海艳, 李刚华, 刘明, 李岩, 王绍华, 刘正辉, 唐设, 丁艳锋. ABA缓解水稻孕穗期干旱胁迫生理特性的分析[J]. 中国农业科学, 2014, 47(22): 4380-4391. DOI:10.3864/j.issn.0578-1752.2014.22.004
GUO G H, LIU H Y, LI G H, LIU M, LI Y, WANG S H, LIU Z H, TANG S, DING Y F. Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress[J]. Scientia Agricultura Sinica, 2014, 47(22): 4380-4391. DOI:10.3864/j.issn.0578-1752.2014.22.004
[25]
YANG Y H, MA X L, YAN L, LI Y C, WEI S H, TENG Z P, ZHANG H, TANG W, PENG S B, LI Y. Soil–root interface hydraulic conductance determines responses of photosynthesis to drought in rice and wheat[J]. Plant Physiology, 2024, 194(1): 376. DOI:10.1093/plphys/kiad498
[26]
LI X M, HAN H P, CHEN M, YANG W, LIU L, LI N, DING X H, CHU Z H. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice[J]. Plant Molecular Biology, 2017, 93(1): 21-34. DOI:10.1007/s11103-016-0544-x
[27]
LIAO Z, ZHANG Y, YU Q, FANG W, CHEN M, LI T, LIU Y, LIU Z, CHEN L, YU S, XIA H, XUE H W, YU H, LUO L J. Coordination of growth and drought responses by GA-ABA signaling in rice[J]. New Phytologist, 2023, 240: 1149-1161. DOI:10.1111/nph.19209
[28]
WAN L Y, ZHANG J F, ZHANG H W, ZHANG Z J, QUAN R D, ZHOU S R, HUANG R F. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLoS One, 2011, 6(9): e25216. DOI:10.1371/journal.pone.0025216
[29]
邵文靖, 石洁, 张普, 郎明林. ERF转录因子调控生物胁迫反应的研究进展[J]. 生物技术通报, 2021, 37(3): 136-143. DOI:10.13560/j.cnki.biotech.bull.1985.2020-0736
SHAO W J, SHI J, ZHANG P, LANG M L. Research progress of ERF transcription factors in regulating biological stress responses[J]. Biotechnology Bulletin, 2021, 37(3): 136-143. DOI:10.13560/j.cnki.biotech.bull.1985.2020-0736
[30]
杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. DOI:10.13560/j.cnki.biotech.bull.1985.2022-0538
YANG M, LIN Y F, DAI Y S, PAN S J, PENG W Y, YAN M X, LI W, WANG B, DAI L Y. OsDIS1 negatively regulates rice drought tolerance through antioxidant pathways[J]. Biotechnology Bulletin, 2023, 39(2): 88-95. DOI:10.13560/j.cnki.biotech.bull.1985.2022-0538
[31]
周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 1-8. DOI:10.13560/j.cnki.biotech.bull.1985.2023-0519
ZHOU H, XIE Y J. Recent progress in oxidative stress signaling and response in plants[J]. Biotechnology Bulletin, 2023, 39(11): 1-8. DOI:10.13560/j.cnki.biotech.bull.1985.2023-0519
[32]
LI Y, HAN S, SUN X, KHAN N U, ZHONG Q, ZHANG Z, ZHANG H, MING F, LI Z, LI J. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice[J]. Journal of Integrative Plant Biology, 2023, 65(4): 918-933. DOI:10.1111/jipb.13414
[33]
HU H, DAI M, YAO J, XIAO B, LI X, ZHANG Q, XIONG L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12987-12992. DOI:10.1073/pnas.0604882103
[34]
FANG Y, LIAO K, DU H, XU Y, SONG H, LI X, XIONG L. A stressresponsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 2015, 66(21): 6803-6817. DOI:10.1093/jxb/erv386
[35]
SONG S Y, CHEN Y, CHEN J, DAI X Y, ZHANG W H. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011, 234(2): 331-345. DOI:10.1007/s00425-011-1403-2
[36]
SHIM J S, OH N, CHUNG P J, KIM Y S, CHOI Y D, KIM J K. Overexpression of OsNAC14 improves drought tolerance in rice[J]. Frontiers in Plant Science, 2018, 9: 310. DOI:10.3389/fpls.2018.00310
[37]
HONG Y, ZHANG H, HUANG L, LI D, SONG F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science, 2016, 7: 4. DOI:10.3389/fpls.2016.00004
[38]
BAE H, KIM S K, CHO S K, KANG B G, KIM W T. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.)[J]. Plant Science, 2011, 180(6): 775-782. DOI:10.1016/j.plantsci.2011.02.008
[39]
LI H W, ZANG B S, DENG X W, WANG X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234(5): 1007-1018. DOI:10.1007/s00425-011-1458-0
[40]
DU H, WANG N, CUI F, LI X, XIAO J, XIONG L. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice[J]. Plant Physiology, 2010, 154(3): 1304-1318. DOI:10.1104/pp.110.163741
[41]
NING J, LI X, HICKS L M, XIONG L. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice[J]. Plant Physiology, 2010, 152(2): 876-890. DOI:10.1104/pp.109.149856
[42]
WEI S, HU W, DENG X, ZHANG Y, LIU X, ZHAO X, LUO Q, JIN Z, LI Y, ZHOU S, SUN T, WANG L, YANG G, HE G. A rice calciumdependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility[J]. BMC Plant Biology, 2014, 14: 133. DOI:10.1186/1471-2229-14-133
[43]
SAIJO Y, KINOSHITA N, ISHIYAMA K, HATA S, KYOZUKA J, HAYAKAWA T, NAKAMURA T, SHIMAMOTO K, YAMAYA T, IZUI K. A Ca(2+)-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles[J]. Plant & Cell Physiology, 2001, 42(11): 1228-1233. DOI:10.1093/pcp/pce158
[44]
FUKAO T, YEUNG E, BAILEY-SERRES J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice[J]. The Plant Cell, 2011, 23(1): 412-427. DOI:10.1105/tpc.110.080325
[45]
LEE D K, JUNG H, JANG G, JEONG J S, KIM Y S, HA S H, DO CHOI Y, KIM J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 2016, 172(1): 575-588. DOI:10.1104/pp.16.00379
[46]
XIONG H, YU J, MIAO J, LI J, ZHANG H, WANG X, LIU P, ZHAO Y, JIANG C, YIN Z, LI Y, GUO Y, FU B, WANG W, LI Z, ALI J, LI Z. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging[J]. Plant Physiology, 2018, 178(1): 451-467. DOI:10.1104/pp.17.01492
[47]
JOO J, LEE Y H, SONG S I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice[J]. Planta, 2019, 249(5): 1521-1533. DOI:10.1007/s00425-019-03104-7
[48]
CHEN Y, SHEN J, ZHANG L, QI H, YANG L, WANG H, WANG J, WANG Y, DU H, TAO Z, ZHAO T, DENG P, SHU Q, QIAN Q, YU H, SONG S. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice[J]. Molecular Plant, 2021, 14(8): 1297-1311. DOI:10.1016/j.molp.2021.05.001
[49]
XIONG H, LI J, LIU P, DUAN J, ZHAO Y, GUO X, LI Y, ZHANG H, ALI J, LI Z. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice[J]. PloS One, 2014, 9(3): e92913. DOI:10.1371/journal.pone.0092913
[50]
WU X, SHIROTO Y, KISHITANI S, ITO Y, TORIYAMA K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1): 21-30. DOI:10.1007/s00299-008-0614-x
[51]
HUANG K, WU T, MA Z, LI Z, CHEN H, ZHANG M, BIAN M, BAI H, JIANG W, DU X. Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth[J]. International Journal of Molecular Sciences, 2021, 22(9): 4337. DOI:10.3390/ijms22094337
[52]
CUI M, ZHANG W, ZHANG Q, XU Z, ZHU Z, DUAN F, WU R. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in r ice[J]. Plant Physiolog y and Biochemistry, 2011, 49(12): 1384-1391. DOI:10.1016/j.plaphy.2011.09.012
[53]
KHONG G N, PATI P K, RICHAUD F, PARIZOT B, BIDZINSKI P, MAI C D, BèS M, BOURRIé I, MEYNARD D, BEECKMAN T, SELVARAJ M G, MANABU I, GENGA A M, BRUGIDOU C, NANG DO V, GUIDERDONI E, MOREL J B, GANTET P. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice[J]. Plant Physiology, 2015, 169(4): 2935-2949. DOI:10.1104/pp.15.01192
[54]
HUANG X Y, CHAO D Y, GAO J P, ZHU M Z, SHI M, LIN H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J]. Genes & Development, 2009, 23(15): 1805-1817. DOI:10.1101/gad.1812409
[55]
XU D Q, HUANG J, GUO S Q, YANG X, BAO Y M, TANG H J, ZHANG H S. Overexpression of a TFⅢA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.)[J]. FEBS Letters, 2008, 582(7): 1037-1043. DOI:10.1016/j.febslet.2008.02.052
[56]
XU K, CHEN S, LI T, MA X, LIANG X, DING X, LIU H, LUO L. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stressresponsive genes[J]. BMC Plant Biology, 2015, 15: 141. DOI:10.1186/s12870-015-0532-3
[57]
ZHOU L, LIU Z, LIU Y, KONG D, LI T, YU S, MEI H, XU X, LIU H, CHEN L, LUO L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientifi c Reports, 2016, 6: 30264. DOI:10.1038/srep30264
[58]
RAMEGOWDA V, BASU S, KRISHNAN A, PEREIRA A. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions[J]. Plant Physiology, 2014, 166(3): 1634-1645. DOI:10.1104/pp.114.248203
[59]
WANG Z, TIAN X, ZHAO Q, LIU Z, LI X, REN Y, TANG J, FANG J, XU Q, BU Q. The E3 ligase drought hypersensitive negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice[J]. The Plant Cell, 2018, 30(1): 228-244. DOI:10.1105/tpc.17.00823
[60]
S UN, X, XIONG H, JIANG C, ZHANG D, YANG Z, HUANG Y, ZHU W, MA S, DUAN J, WANG X, LIU W, GUO H, LI G, QI J, LIANG C, ZHANG Z, LI J, ZHANG H, HAN L, ZHOU Y, PENG Y, LI Z. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communications, 2022, 13(1): 4265. DOI:10.1038/s41467-022-31844-w
[61]
罗志, 周衡陵, 李静, 李朝阳, 王磊, 罗利军, 夏辉. 陆稻的起源与适应性进化研究进展[J]. 上海农业学报, 2022, 38(4): 9-19. DOI:10.15955/j.issn1000-3924.2022.04.02
LUO Z, ZHOU H L, LI J, LI Z Y, WANG L, LUO L J, XIA H. Research progress on the origin and adaptive evolution of upland rice[J]. Acta Agriculturae Shanghai, 2022, 38(4): 9-19. DOI:10.15955/j.issn1000-3924.2022.04.02
[62]
张瑛. 中国西南地区旱稻种质资源遗传多样性的SSR分析[D]. 南宁: 广西师范大学, 2008.
ZHANG Y. Assessment of genetic diversity in upland rice germplasm from southwest China using SSR markers[D]. Nanning: Guangxi Normal University, 2008.
[63]
周季维. 云南旱稻生产的历史和现况[J]. 云南农业科技, 1982(5): 22-26, 5.
ZHOU J W. History and present situation of upland rice production in Yunnan[J]. Yunnan Agricultural Science and Technology, 1982(5): 22-26, 5.
[64]
张建梅. 发挥独特区域优势助推优质陆稻开发: 孟连陆稻优质米开发前景分析[J]. 吉林农业, 2016(6): 72-73. DOI:10.14025/j.cnki.jlny.2016.06.005
ZHANG J M. Taking advantage of unique regional advantages to promote the development of high-quality land rice: An analysis of the development prospect of high-quality land rice in Menglian[J]. Agriculture of Jilin, 2016(6): 72-73. DOI:10.14025/j.cnki.jlny.2016.06.005
[65]
黄艳玲, 王士梅, 张德文, 汪婉琳, 杨前进, 朱启升. 耐旱水稻新品种"绿旱1号"节水特性[J]. 中国农学通报, 2010, 26(14): 169-171.
HUANG Y L, WANG S M, ZHANG D W, WANG W L, YANG Q J, ZHU Q S. The high efficiency water saving of drought resistance 'Lvhan No.1'[J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 169-171.
[66]
王生轩, 尹海庆, 唐保军, 王越涛, 黄蕾. 高产旱稻新品种郑旱2号的选育[J]. 作物杂志, 2003(5): 51. DOI:10.16035/j.issn.1001-7283.2003.05.027
WANG S X, YIN H Q, TANG B J, WANG Y T, HUANG L. Breeding of a new high yield upland rice variety Zhenghan2[J]. Crops, 2003(5): 51. DOI:10.16035/j.issn.1001-7283.2003.05.027
[67]
杨洁, 徐建欣. 海南山栏稻抗旱研究进展[J]. 热带农业科学, 2018, 38(12): 64-68. DOI:10.12008/j.issn.1009-2196.2018.12.013
YANG J, XU J X. Research advances in the drought resistance of shanlan upland rice in Hainan Province[J]. Chinese Journal of Tropical Agriculture, 2018, 38(12): 64-68. DOI:10.12008/j.issn.1009-2196.2018.12.013
[68]
黄春燕, 罗文启, 王波, 杨小波. 海南中南部地区旱稻(山兰稻) 种质资源及保育模式[J]. 广西植物, 2015, 35(6): 905-912. DOI:10.11931/guihaia.gxzw201408008
HUANG C Y, LUO W Q, WANG B, YANG X B. Germplasm resource and conservative model of upland rice (Shanlan rice) in south-central Hainan[J]. Guihaia, 2015, 35(6): 905-912. DOI:10.11931/guihaia.gxzw201408008
[69]
翟楠鑫, 迟会, 夏玥琳, 刘彩月, 裴新梧, 袁潜华. 海南山栏稻抗旱基因转录组分析[J]. 生物技术通报, 2020, 36(12): 12-20. DOI:10.13560/j.cnki.biotech.bull.1985.2020-042
ZHAI N X, CHI H, XIA Y L, LIU C Y, PEI X W, YUAN Q H. Transcriptome analysis of drought-resistant genes in hainan shanlan upland rice[J]. Biotechnology Bulletin, 2020, 36(12): 12-20. DOI:10.13560/j.cnki.biotech.bull.1985.2020-042
[70]
周述波, 贺立静, 林伟, 贺立红, 杜前进, 陈川平. 山兰稻对非生物逆境胁迫响应的研究进展[J]. 海南热带海洋学院学报, 2020, 27(2): 99-104. DOI:10.13307/j.issn.2096-3122.2020.02.15
ZHOU S B, HE L J, LIN W, HE L H, DU Q J, CHEN C P. Research progress on response of shanlan upland rice to abiotic stress[J]. Journal of Hainan Tropical Ocean University, 2020, 27(2): 99-104. DOI:10.13307/j.issn.2096-3122.2020.02.15
[71]
唐力琼, 王效宁, 王新华, 霍兴, 唐清杰, 徐靖, 朱红林, 徐鹏, 林延慧. 分子标记辅助选育旱稻新品种'中科西陆2号'[J]. 分子植物育种, 2020, 18(24): 8147-8154. DOI:10.13271/j.mpb.018.008147
TANG L Q, WANG X N, WANG X H, HUO X, TANG Q J, XU J, ZHU H L, XU P, LIN Y H. Breeding of new upland rice variety 'Zhongkexilu2' by molecular markerassisted selection[J]. Molecular Plant Breeding, 2020, 18(24): 8147-8154. DOI:10.13271/j.mpb.018.008147
[72]
罗利军. 节水抗旱稻的培育与产业发展[J]. 中国稻米, 2022, 28(5): 14-19. DOI:10.3969/j.issn.1006-8082.2022.05.003
LUO L J. Breeding and industrial development of water-saving and drought-resistance rice[J]. China Rice, 2022, 28(5): 14-19. DOI:10.3969/j.issn.1006-8082.2022.05.003
[73]
罗利军. 节水抗旱稻的概念与发展历程[J]. 上海农业学报, 2022, 38(4): 1-8. DOI:10.15955/j.issn1000-3924.2022.04.01
LUO L J. Concept and development history of water-saving and drought-resistance rice (WDR)[J]. Acta Agriculturae Shanghai, 2022, 38(4): 1-8. DOI:10.15955/j.issn1000-3924.2022.04.01
[74]
何燕, 吴毅杰, 黄智灵. 巴西旱稻IAPAR9的特性与广西早季适播期分析[J]. 广西农业科学, 2003(2): 15-16.
HE Y, WU Y J, HUANG Z L. Characteristics of Brazilian upland rice IAPAR9 and its suitable sowing date in Guangxi in early season[J]. Guangxi Agricultural Sciences, 2003(2): 15-16.
[75]
余汉勇, 魏兴华, 王一平, 袁筱萍, 汤圣祥. 国外近年旱稻选育品种(品系)产量和主要品质性状的综合评价[J]. 中国稻米, 2004(2): 18-19, 22.
YU H Y, WEI X H, WANG Y P, YUAN X P, TANG S X. Comprehensive evaluation of yield and main quality characters of selected varieties (lines) of upland rice abroad in recent years[J]. China Rice, 2004(2): 18-19, 22.
[76]
钱泳文, 何昆明. 广东的陆稻资源[J]. 作物品种资源, 1987(2): 14-15, 18. DOI:10.19462/j.cnki.1671-895x.1987.02.005
QIAN Y W, HE K M. Land rice resources of Guangdong[J]. Crop Variety Resources, 1987(2): 14-15, 18. DOI:10.19462/j.cnki.1671-895x.1987.02.005
[77]
伍龙梅, 张悦, 刘妍, 邹积祥, 杨陶陶, 包晓哲, 黄庆, 陈青春, 蒋耀智, 梁巧丽, 张彬. 直播稻研究进展及发展对策分析[J]. 中国农学通报, 2023, 39(6): 1-5.
WU L M, ZHANG Y, LIU Y, ZOU J X, YANG T T, BAO X Z, HUANG Q, CHEN Q C, JIANG Y Z, LIANG Q L, ZHANG B. Direct seeding rice: Research progress and development strategy[J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 1-5.
[78]
方志强, 陆展华, 王石光, 刘维, 卢东柏, 王晓飞, 巫浩翔, 陈浩, 何秀英. 不同种植模式对水稻生长的影响及适宜直播品种的筛选[J]. 广东农业科学, 2022, 49(6): 1-10. DOI:10.16768/j.issn.1004-874X.2022.06.001
FANG Z Q, LU Z H, WANG S G, LIU W, LU D B, WANG X F, WU H X, CHEN H, HE X Y. Effects of different planting patterns on rice growth and selection of rice varieties suitable for direct seeding[J]. Guangdong Agricultural Sciences, 2022, 49(6): 1-10. DOI:10.16768/j.issn.1004-874X.2022.06.001
[79]
曾山. 水稻精量旱直播机研究与应用[J]. 现代农业装备, 2019, 40(4): 14-18.
ZENG S. Research and application of rice precision direct seeding machine for dry land[J]. Modern Agricultural Equipment, 2019, 40(4): 14-18.
[80]
何秀英, 刘维, 陆展华, 王晓飞, 王石光, 方志强, 巫浩翔, 陈浩. 广东优质稻粤农丝苗的衍生品种及其特征特性研究[J]. 广东农业科学, 2022, 49(9): 66-73. DOI:10.16768/j.issn.1004-874X.2022.09.007
HE X Y, LIU W, LU Z H, WANG X F, WANG S G, FANG Z Q, WU H X, CHEN H. Study on derived varieties of high-quality Guangdong rice Yuenongsimiao and their characteristics[J]. Guangdong Agricultural Sciences, 2022, 49(9): 66-73. DOI:10.16768/j.issn.1004-874X.2022.09.007
[81]
陆展华, 刘维, 卢东柏, 王晓飞, 王石光, 何秀英. 优质稻品种粤农丝苗稻瘟病广谱抗性遗传及基因组成分析[J]. 植物遗传资源学报, 2020, 21(4): 827-833. DOI:10.13430/j.cnki.jpgr.20191128001
LU Z H, LIU W, LU D B, WANG X F, WANG S G, HE X Y. Genetic analysis and gene identification of high-quality rice 'Yuenong Simiao' with broad spectrum resistance against rice blast[J]. Journal of Plant Genetic Resources, 2020, 21(4): 827-833. DOI:10.13430/j.cnki.jpgr.20191128001
[82]
陆展华, 王晓飞, 刘维, 卢东柏, 王石光, 薛皦, 何秀英. 优质稻粤农丝苗抗倒伏影响因素和遗传分析[J]. 植物遗传资源学报, 2021, 22(3): 638-645. DOI:10.13430/j.cnki.jpgr.20200918003
LU Z H, WANG X F, LIU W, LU D B, WANG S G, XUE J, HE X Y. Influencing factors and genetic analysis of lodging resistance of highquality rice Yuenong Simiao[J]. Journal of Plant Genetic Resources, 2021, 22(3): 638-645. DOI:10.13430/j.cnki.jpgr.20200918003
[83]
薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻"粤农丝苗"白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
XUE J, LU D B, LIU W, LU Z H, WANG S G, WANG X F, FANG Z Q, HE X Y. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice 'Yuenong Simiao'[J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[84]
潘朝阳, 陆展华, 刘维, 王晓飞, 王石光, 陈浩, 方志强, 巫浩翔, 何秀英. 表型组学研究进展及其在作物研究中的应用[J]. 广东农业科学, 2022, 49(9): 105-113. DOI:10.16768/j.issn.1004-874X.2022.09.011
PAN C Y, LU Z H, LIU W, WANG X F, WANG S G, CHEN H, FANG Z Q, WU H X, HE X Y. Advances in Phenomics and its application in crop research[J]. Guangdong Agricultural Sciences, 2022, 49(9): 105-113. DOI:10.16768/j.issn.1004-874X.2022.09.011
[85]
WU T, ZHANG M G, ZHANG H J, HUANG K, CHEN M J, CHEN C, YANG X, LI Z, CHEN H Y, MA Z M, ZHANG X M, JIANG W Z, DU X L. Identification and characterization of EDT1 conferring drought tolerance in rice[J]. Journal of Plant Biology, 2019, 62: 39-47. DOI:10.1007/s12374-018-0203-7
[86]
HUA L, WU J, CHEN C, WU W, HE X, LIN F, WANG L, ASHIKAWA I, MATSUMOTO T, WANG L, PAN Q. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast[J]. Theoretical and Applied Genetics, 2012, 125(5): 1047-1055. DOI:10.1007/s00122-012-1894-7
[87]
ZHOU B, DOLAN M, SAKAI H, WANG G L. The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice[J]. Molecular Plant-Microbe Interactions, 2007, 20(1): 63-71. DOI:10.1094/MPMI-20-0063
[88]
DENG Y, ZHAI K, XIE Z, YANG D, ZHU X, LIU J, WANG X, QIN P, YANG Y, ZHANG G, LI Q, ZHANG J, WU S, MILAZZO J, MAO B, WANG E, XIE H, THARREAU D, HE Z. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): 962-965. DOI:10.1126/science.aai8898
[89]
JIANG G, YIN D, SHI Y, ZHOU Z, LI C, LIU P, JIA Y, WANG Y, LIU Z, YU M, WU X, ZHAI W, ZHU L. OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene Xa5-mediated immunity to rice bacterial blight[J]. Scientifi c Reports, 2020, 10(1): 6313. DOI:10.1038/s41598-020-63059-8
[90]
WANG S, LIU W, LU D, LU Z, WANG X, XUE J, HE X. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in rice breeding[J]. Frontiers in Plant Science, 2020, 11: 555228. DOI:10.3389/fpls.2020.555228
[91]
JI H, KIM S R, KIM Y H, SUH J P, PARK H M, SREENIVASULU N, MISRA G, KIM S M, HECHANOVA S L, KIM H, LEE G S, YOON U H, KIM T H, LIM H, SUH S C, YANG J, AN G, JENA K K. Erratum: Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (bph) insect pest[J]. Scientifi c Reports, 2016, 6: 36688. DOI:10.1038/srep36688
[92]
HE J, LIU Y, YUAN D, DUAN M, LIU Y, SHEN Z, YANG C, QIU Z, LIU D, WEN P, HUANG J, FAN D, XIAO S, XIN Y, CHEN X, JIANG L, WANG H, YUAN L, WAN J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 271-277. DOI:10.1073/pnas.1902771116

(责任编辑     崔建勋)