广东农业科学  2024, Vol. 51 Issue (2): 139-151   DOI: 10.16768/j.issn.1004-874X.2024.02.013.
0

文章信息

引用本文
薛晓文, 陆宝悦, 韩崇, 舒琥. 硬骨鱼类性别调控对大刺鳅性逆转的启示[J]. 广东农业科学, 2024, 51(2): 139-151.   DOI: 10.16768/j.issn.1004-874X.2024.02.013
XUE Xiaowen, LU Baoyue, HAN Chong, SHU Hu. Inspiration of Sex Regulation in Teleosts on Sex Reversal of Zig-zag Eel (Mastacembelus armatus)[J]. Guangdong Agricultural Sciences, 2024, 51(2): 139-151.   DOI: 10.16768/j.issn.1004-874X.2024.02.013

基金项目

广东省自然科学基金(2019B1515120064);中国-东盟渔业资源保护与开发利用项目(CAMC-2018F);广东省乡村振兴战略专项资金种业振兴项目(2022-SPY-00-017);广州大学“2+5”平台资金支持(2023)

作者简介

薛晓文(1995—),女,在读硕士生,研究方向为鱼类繁殖生物学,E-mail:xxw18620939753@163.com.

通讯作者

舒琥(1965—),男,博士,教授,研究方向为经济鱼类繁育、生理与分子生物学,E-mail:shuhu001@126.com.

文章历史

收稿日期:2023-11-13
硬骨鱼类性别调控对大刺鳅性逆转的启示
薛晓文 , 陆宝悦 , 韩崇 , 舒琥     
广州大学生命科学学院,广东 广州 510006
摘要:鱼类的性别控制受遗传性别决定和环境性别决定两种机制的影响,对水产养殖具有重要意义。与其他脊椎动物相比,鱼类在性别分化和性腺发育方面可塑性强。硬骨鱼类雌雄个体的大小和生长速度存在显著的两性差异,培育和养殖体型大、生长速度快的单性群体有利于提高经济效益。大刺鳅是一种具有高营养价值和经济价值的淡水养殖鱼类,雄性个体比雌性生长速度更快、体型更大,因此培育全雄大刺鳅的经济效益更高。野生大刺鳅雌雄比例约为1∶1,但在人工养殖条件下易出现高雌性率的现象。目前尚不清楚何种因素引起大刺鳅的雌性化,也未见成功诱导大刺鳅生理雌鱼发生性逆转的报道,这极大制约了大刺鳅养殖产业的发展和经济效益的提高。目前关于大刺鳅的研究主要集中在形态学、生理学、繁殖生物学和遗传多样性等方面,关于大刺鳅性别决定与性别分化的研究较为薄弱,需从其他硬骨鱼类的性别决定机制、性别调控方式和性别控制育种技术中发掘思路。基于硬骨鱼类的性别决定机制,综述了硬骨鱼类性别控制的几种方式,主要包括遗传因素调控(如性染色体、常染色体上的性别决定基因)和环境因素调控(如温度、外源激素、饵料等)。旨在为解析人工养殖大刺鳅高雌化的原因及潜在作用机制提供思路,同时为大刺鳅单性种群的繁殖与保持、优良品种的选育和种质资源保护提供重要的理论依据,以期更好地了解大刺鳅性腺发育和生殖机制,解决现阶段养殖大刺鳅雄性率低的瓶颈,为大刺鳅养殖业可持续发展提供保障。
关键词硬骨鱼类    性别控制    遗传性别决定    环境性别决定    性逆转    大刺鳅    
Inspiration of Sex Regulation in Teleosts on Sex Reversal of Zig-zag Eel (Mastacembelus armatus)
XUE Xiaowen , LU Baoyue , HAN Chong , SHU Hu     
School of Life Sciences, Guangzhou University, Guangzhou 510006, China
Abstract: Influenced by two mechanisms of genetic sex determination and environmental sex determination, the sex control of fish is of great significance for aquaculture. Compared with other vertebrates, fishes exhibit great plasticity in sex differentiation and gonadal development. There are significant differences in the size and growth rate of male and female teleosts. Cultivating and breeding large and fast-growing unisexual populations is beneficial to improve economic benefits. Mastacembelus armatus is a kind of freshwater aquaculture fish with high nutritional and economic values. Male individuals grow faster and have a larger body size than females, therefore, cultivating all-male M. armatus has higher economic benefits.In the wild environment, the male to female ratio of the M. armatus is approximately 1∶1, however, there is a high female rate under artificial breeding conditions. At present, it has not been clear what factors cause the feminization of M. armatus, and there have been no successful reports of inducing physiological female sex reversal in the M. armatus, which greatly restricts the development of the M. armatus breeding industry and the improvement of economic benefits. At present, researches on the M. armatus mainly focus on morphology, physiology, reproductive biology, genetic diversity, and other aspects. The research on sex determination and differentiation of the M. armatus is relatively weak, and it is necessary to explore ideas from the sex determination mechanisms, sex regulation methods and sex control breeding techniques of other teleosts. Based on the mechanism of sex determination in teleosts, and the review summarizes several ways of sex control in teleosts, mainly including genetic factors regulation like sex determining genes on sex chromosomes and autosomes, as well as environmental factors regulation, such as temperature, exogenous hormones and fish feed. It aims to provide ideas for analyzing the causes and potential mechanism forhigh feminization of artificial cultivation of the M. armatus, and to provide important theoretical basis for the reproduction and maintenance of unisexual populations, the selection of excellent varieties, and the protection of germplasm resources of the M. armatus, to better understand the gonadal development and reproductive mechanism of the M. armatus, solve the bottleneck of low male rate in currently cultivated M. armatus and provide guarantees for the sustainable development of the M. armatus aquaculture industry.
Key words: teleost    sex control    genetic sex determination    environmental sex determination    sex reversal    Mastacembelus armatus    

性别决定与分化是发育生物学和繁殖生物学等领域的热点问题。性别决定指决定未分化性腺的分化方向,即向卵巢或精巢分化;性别分化指未分化性腺发育为卵巢或精巢,并演变成一系列性别特征的过程,如功能性别、性别二态性、第二性征 [1]。鱼类普遍存在包括生长、大小、形态、颜色和行为等显著的两性差异,如大刺鳅雄鱼较雌鱼生长速度快、体型大 [2],因此性别控制对水产养殖业的意义重大。与其他脊椎动物相比,鱼类在性别决定和性腺发育方面表现出较大的可塑性,其性别决定通常受遗传性别决定(Genetic sex determination, GSD)和环境性别决定(Environmental sex determination, ESD)两种机制的影响 [3]。遗传性别决定是指性别由性染色体和常染色体上的性别决定基因来决定;环境性别决定是指性别受到温度、外源激素、光照等环境因素的影响 [1],这些环境因素通常可以改变遗传因素对性别分化的影响。

大刺鳅(Mastacembelus aculeatus)属合鳃目(Symbranchiformes)刺鳅科(Mastacembelidae)刺鳅属(Mastacembelus),主要分布在东南亚和我国华南地区 [4],是一种高蛋白、低脂肪的底栖淡水鱼类,肌肉中富含多种氨基酸和不饱和脂肪酸,无肌间刺、肉味鲜美,具有较高的营养价值和经济价值 [5]。近年来,由于过度捕捞和环境污染等因素的影响,大刺鳅野生资源遭到严重破坏,福建、湖南和广东省已将其列入重点保护的野生水生动物之一 [6],保护大刺鳅种质资源、发展大刺鳅养殖业具有重要意义。野生环境中的大刺鳅雌雄比例约为1∶1 [7],然而在人工养殖条件下则出现雌性率高的现象 [8],目前尚不清楚大刺鳅高雌化的机制,极大制约了大刺鳅的产业发展和养殖效益。有关大刺鳅的研究主要集中在形态学 [7, 9]、生理学 [5]、繁殖生物学 [10]、遗传多样性 [11-13]、营养学 [6]、性别特异性分子标记 [2, 14]等方面,关于人工养殖大刺鳅雌性率高的研究鲜有报道。因此基于硬骨鱼类的性别决定机制,综述了性别调控的几种方式,包括性别决定基因控制、人工性别逆转等,旨在为解析人工养殖大刺鳅雌性率高的潜在机制提供思路,为大刺鳅繁殖提供源源不断的雄性亲鱼、培育YY超雄鱼,以期更好地了解大刺鳅性腺发育和生殖机制,为大刺鳅养殖业可持续发展提供参考。

1 遗传因素对硬骨鱼的性别调控 1.1 性别决定系统

硬骨鱼类几乎囊括了脊椎动物所有的性染色体类型,概括为以下5种:XX/XY型,即雄性异配型,也是大多数鱼类的性染色体类型,如大刺鳅 [14]、黄颡鱼(Pelteobagrus fulvidraco[15]、尼罗罗非鱼(Oreochromis niloticus[16]、兰州鲶(Silurus lanzhouensis[17];ZW/ZZ型,即雌性异配型,如奥利亚罗非鱼(Oreochromis aureus[18]、半滑舌鳎(Cynoglossus semilaevis[19]、大菱鲆(Scophthalmus maximus[20]、小体鲟(Acipenser ruthenus[21];ZZ/ZO和XX/XO型,即异配型染色体组合中缺少1条性染色体,如短颌鲚(Coilia brachygnathus[22];复性染色体型,如X1X1X2X2/X1X2Y,为Y染色体与常染色体融合体,仅鱼类中发现该类型性染色体组合,如条石鲷(Oplegnathus fasciatus[23];常染色体型,即用现有的技术未能发现异型性染色体,其性别决定可能由常染色体主导,如斑马鱼(Danio rerio[24]表 1)。

表 1 硬骨鱼的性别决定系统及代表种类 Table 1 Sex determination system and representative species of teleosts

1.2 性别决定相关基因

鱼类的性别决定基因集中在性染色体和常染色体上。随着基因组学和分子生物学技术的快速发展,性别二态性的遗传基础逐渐被破译,鱼类性别决定机制和性别决定基因鉴定的研究也取得了很大进展。在硬骨鱼类中发现的性别决定基因主要包括:sox9dmrt1amhcyp19a1afoxl2等,这些基因与具有性别二态性鱼类的经济性状密切相关,然而与大刺鳅性腺分化和发育相关的基因调控机制研究并不深入。通过对硬骨鱼类性别决定基因调控鱼类性别的归纳总结,为大刺鳅实现雌转雄性逆转提供理论基础。

1.2.1 sox基因家族 soxSry related high mobility group-box)基因家族广泛存在于无脊椎动物和脊椎动物之中,其编码的蛋白包含1个具有DNA结合能力的高迁移率结构域(High-mobility group box, HMG-box)。目前动物中已鉴定得到的sox基因家族成员有40多种,可分为A ~ K共11个亚族,其家族成员参与调控胚胎、性腺、神经系统的发育以及心脏、血管、骨骼的发生等多项发育过程 [25]Sry(Sex determining region of Y chromosome)是最早发现的sox基因家族成员,位于人类Y染色体上,是雄性性别决定基因 [26-27]soxB1亚族的sox3soxE亚族的sox9与鱼类的性腺发育密切相关。

sox3sox9在不同鱼类的性腺发育和性别决定中起不同的作用。sox3参与了胡子鲇(Clarias batrachus)精巢的分化、发育及精子发生的调控 [28],是恒河青鳉(Oryzias dancena)Y染色体上的雄性性别决定基因(sox3Y[29],然而其在许氏平鲉(Sebastes schlegeli)卵母细胞和滤泡细胞中表达量显著高于精巢的生殖细胞 [30]。因此sox3可能既参与精巢的发育过程,也参与卵巢的发育过程。sox9基因在硬骨鱼类中存在2个拷贝,即sox9asox9b [31]。成熟斑马鱼中,sox9a在精巢中表达,而sox9b仅在卵母细胞表达 [32];尼罗罗非鱼中,sox9a主要参与性别决定和卵巢分化的调控,而sox9b调控精巢的分化 [33];褐牙鲆(Paralichthys olivaceus)中,sox9asox9b在精巢中的表达量显著高于卵巢,在卵巢中几乎不表达 [34];西里伯斯青鳉(Oryzias celebensis)中,sox9b在精巢中高表达 [35]sox9的表达水平在雌雄同体的黄鳝(Monopterus albus)由雌到雄自然性逆转的过程中存在显著的两性差异,在雄鱼中高表达,故而推测sox9与黄鳝自然性逆转的发生密切相关 [36]。大刺鳅与同为合鳃目的黄鳝亲缘关系较近 [37],表明它们之间可能存在一些共同的生物学特性。据此本研究预测,上调sox9或能实现大刺鳅雌转雄的性逆转。目前尚缺乏sox3sox9在大刺鳅中相应的功能研究,其是否在雄鱼精巢分化发育中发挥重要作用仍需要进一步探索。

1.2.2 dmrt基因家族 dmrt(Doublesex and mab-3 related transcription factor)基因家族编码与DNA结合且高度保守的蛋白功能域——DM结构域(Doublesex and Mab-3 domain),被鉴定存在于人、小鼠、鸟类、鱼类、果蝇、线虫等脊椎动物和无脊椎动物,且与性别分化有关 [38]。目前dmrt基因家族成员除了来自黑腹果蝇(Drosophila melanogaster)的性别决定基因dsx(Doublesex)[39]和秀丽隐杆线虫(Caenorhabditis elegans)的性别决定基因mab-3(Male-abnormal-3)[40]外,还有9个dmrt基因(dmrt1~dmrt8dmrt2b[41]dmrt基因家族的研究主要集中在dmrt1-4,其中对dmrt1的研究最为广泛 [42]dmrt1参与多种动物的性别发育过程,在雄性发育中发挥重要作用,被认为是继Srysox9之后的又一重要的性别决定相关基因 [42]dmrt1在水产动物的精巢中表达水平较高,如大口黑鲈(Micropterus salmoide[43]、尼罗罗非鱼 [44]和大刺鳅 [45]中,dmrt1均表现出精巢偏向性表达。黑鲷(Acanthopagrus schlegelii)中敲降dmrt1会导致精巢生殖细胞数量的减少,并刺激雄性向雌性的性别转变 [46]。对17种鱼类的dmrt基因进行进化关系检测发现,它们均含有dmrt1~dmrt5,只有少数鱼类含有dmrt6,且dmrt1dmrt2admrt2bdmrt3-5在鱼类中相对保守,dmrt6在多数鱼类中丢失 [47],但dmrt6在大刺鳅的性别分化过程中起重要作用,主要在精巢中表达,特异性表达于精巢生精小叶中,而在卵巢中不表达 [48]。目前的研究仅表明dmrt1dmrt6在大刺鳅的精巢中高表达,在卵巢中几乎不表达。因此,大刺鳅性腺的分化和精巢功能的维持可能与dmrt1dmrt6在精巢中高表达有关。后续研究可利用基因编辑技术,分别对dmrt1和dmrt6进行敲除或者敲降,观察是否能成功诱导大刺鳅雌转雄性逆转并进一步研究人工养殖大刺鳅高雌化的原因及其机制

1.2.3 amh基因 抗缪勒氏管激素(Anti-müllerian hormone,Amh)是转分化生长因子TGF-β(Transforming growth factor β)超家族的骨形成蛋白(Bone morphogenetic protein,Bmp)成员,对脊椎动物雄性发育至关重要 [3]。尽管硬骨鱼类没有缪勒氏管,但是在很多鱼类中,如虹鳟(Oncorhynchus mykiss[49]、日本青鳉 [50]、银鳕鱼(Anoplopoma fimbria[51]等均发现了amh。黑鲷通过amh的作用抑制卵巢发育,雄鱼中amh保持高水平表达 [52-53]amhyamh在Y染色体上的特异性复制,研究发现amhy在银汉鱼(Odontesthes bonariensis)精巢的发育中起关键作用,是银汉鱼雄性性别决定基因,在XY型银汉鱼中敲降amhy会导致雌性特异基因foxl2cyp19a1a表达上调和卵巢发育 [54]amhy也是尼罗罗非鱼的性别决定基因,在雄性中敲除amhy会导致雄鱼性逆转为雌鱼,雌性中过表达amhy会导致雌鱼性逆转为雄鱼 [55-56]amh的表达随黄鳝雌性-间性-雄性的性别变化过程而逐渐上调,在雌性性腺该基因的表达处于较低水平,间性中该基因的表达量显著升高且在雄性性腺中维持一个较高的水平,其表达量的上调能够启动黄鳝雄性支持细胞的分化,促进精巢发育 [57-58]。目前未见amh与大刺鳅性逆转相关的研究,根据在其他鱼类和亲缘关系较近的黄鳝中已有的研究,推测amh与大刺鳅雄性的发育和精巢的维持有关,过表达amh能否使大刺鳅雌鱼性逆转为功能性雄鱼仍需进一步验证。

1.2.4 cyp19a1a基因 硬骨鱼中存在2个不同基因编码的芳香化酶(Aromatase),包括cyp19a1a编码的卵巢芳香化酶和cyp19a1b编码的脑型芳香化酶。芳香化酶是催化合成雌激素的关键酶,而雌激素在鱼类性别决定与分化中具有重要作用 [59]。在金鱼(Carassius auratus)中首次克隆出脑型和卵巢型2种芳香化酶基因 [60]。有研究对斑马鱼、漠斑牙鲆(Paralichthys lethostigma)、欧洲鲈(Dicentrarchus labrax)等10多种鱼类中芳香化酶在其组织中的分布进行比较,发现cyp19a1a主要在卵巢中表达,而cyp19a1b主要在脑中表达 [61],大刺鳅中同样证实cyp19a1a在卵巢中高表达 [44]。多数鱼类中确定存在2种芳香化酶,如黄鳝 [62]、日本青鳉 [63],但日本鳗鲡(Anguilla japonica)中只发现了1种芳香化酶,且在卵巢中检测到活性,精巢中未检测到 [64]。黄鳝雌性-间性-雄性的性腺中,cyp19a1a的表达水平逐渐下降 [62],说明黄鳝性腺中的cyp19a1a在其性逆转中发挥着重要作用。在斑马鱼中纯合敲除cyp19a1a,突变鱼均为雄鱼 [65],因此芳香化酶在卵巢分化和发育中起到重要作用。根据现有研究,推测可以利用CRISPR/Cas9敲除或敲降cyp19a1a,诱导大刺鳅精巢分化,实现雌转雄性逆转。

1.2.5 foxl2基因 foxl2(Winged helix/forkhead transcription factor gene 2),属于翼状螺旋/叉头框转录因子超家族成员,是保守的卵巢分化基因,可调节cyp19a1a的表达,对卵巢的分化起到重要作用 [66]。斑马鱼 [67]、西里伯斯青鳉 [35]、大刺鳅 [68]中,foxl2在卵巢中高表达,且在大刺鳅卵巢成熟的过程中表达量递增,表明foxl2可能促进卵巢发育。另有研究发现,foxl2在出膜30 d的XX型大刺鳅中显著表达,而XY型大刺鳅则是在出膜40 d达到峰值后表达下调,故推测XY型大刺鳅在性腺发育早期受环养殖境影响使雌性相关通路的关键基因foxl2显著表达,进而发生雌性化 [45]。尼罗罗非鱼中,foxl2的破坏可以诱发XX雌鱼不同程度的精巢发育,在XY型雄鱼中过表达foxl2会导致精巢结构退化和雌激素水平升高 [69],敲除foxl2导致cyp19a1a表达下调,而sf1dmrt1表达上调,并且出现雌鱼性逆转为雄鱼 [70]。在多种硬骨鱼中存在2个foxl2基因,即foxl2foxl2a)和foxl3foxl2b[71]。欧洲鲈中,foxl2foxl3的表达有显著的性别二态性,foxl2主要在卵巢中表达,foxl3主要在精巢中表达 [72]。黄鳝中也有相似研究结果,在自发性逆转的过程中,foxl2的表达下降时,表现出雌性偏向性,而foxl3的表达显著升高,表现出雄性偏向性 [36]。然而在斑马鱼中建立foxl2–/–foxl3–/–和双基因的纯合敲除系,发现卵巢早衰、部分性逆转和完全性逆转分别发生在上述3个突变体中,foxl2foxl3相互合作调节斑马鱼卵巢的分化和维持,并且foxl3在阻止卵巢分化为精巢中起主导作用 [73]。综上,大刺鳅性别转换可能需要抑制雌性相关基因如foxl2的表达,进一步研究foxl2在大刺鳅性腺发育早期的上调机制,有助于阐明人工养殖大刺鳅雌性率高的分子机制。

人工养殖条件下大刺鳅的性别变化特征与黄鳝类似,存在雌性先熟雌雄同体的现象 [8],但与大刺鳅具有XY染色体的研究结果有所不同 [14]。通常,具有XY性别决定系统的鱼类,在没有外源性类固醇激素诱导的情况下,不会出现性别变化 [48]。目前未有研究明确提出何种因素导致人工养殖大刺鳅出现雌性化,大刺鳅的性别变化可能是由环境因素引起的,如温度、外源激素、饵料、环境内分泌干扰物等。

2 环境因素对硬骨鱼的性别调控 2.1 温度

鱼类性别分化除受遗传因素控制外,还受环境因素的影响,是多种因素相互作用的综合结果。环境性别决定中最常见的是温度依赖性性别决定(Temperature sex determination, TSD)。在大西洋银汉鱼(Atlantic silverside)中首次发现鱼类的性别分化与环境温度相关 [74]。漠斑牙鲆和褐牙鲆中,高温和低温均可提高雄性比例,中间温度时性比趋向于1∶1 [75]。此后发现尼罗罗非鱼 [76-77]、六倍体异育银鲫(Carassius gibelio[78]、黄颡鱼 [79]在高温下处理均会发生雌鱼向雄鱼的性逆转。温度对大鳍鳞鳃太阳鱼(Lepomis macrochirus)的性比有显著影响,低温处理时(17 ℃)雌性比例显著下降,高温处理时(29 ℃和34 ℃)雌性比例显著上升 [80]。进一步研究发现,4个不同地理种群的大鳍鳞鳃太阳鱼中有3种对温度不同响应的性比类型,即高温产生更多雄鱼、低温产生更多雄鱼和对温度不敏感类型。说明即使是同一种鱼类、不同地理种群的子代性比对温度的响应也不尽相同 [81]。通过温度对其他硬骨鱼类性别调控的研究为理论基础,设计温度梯度实验探究温度是否可以降低大刺鳅人工养殖群体的雌性率,提高雄性比例。

2.2 外源激素

2.2.1 性类固醇激素 目前关于性类固醇激素对鱼类性别的作用有两种观点,一种是基于性类固醇激素能成功控制性别决定关键时期的鱼类性别提出的“平衡假说”,认为鱼类性别的分化取决于鱼体早期雌雄激素水平的比例,若雌激素多于雄激素则发育为雌性,反之则发育为雄性。另一种观点是基于对发育早期鱼体内类固醇合成酶研究上提出的“缺失假说”,认为雌激素是鱼类性别分化的关键因素,在性别决定关键时期若体内有雌激素的合成则发育为雌性,没有则发育为雄性 [1]

外源性类固醇激素会影响鱼类性别分化。在鱼类性腺分化早期,外源类固醇激素甚至能完全改变原有的性腺分化方向,出现完全的性逆转 [1]。在日本青鳉中首次利用外源雄激素处理性别分化前的幼鱼,成功诱导性逆转的发生 [82]。17α-甲基睾酮(MT)是目前诱导鱼类性逆转使用最广泛、最有效的雄激素 [45]。使用MT混合饲料喂养莫桑比克罗非鱼(Oreochromis mossambicus),可获得全雄鱼 [83]。MT可诱导尼罗罗非鱼 [84]、斜带石斑鱼(Epinephelus coioides[85]精巢发育,雌鱼性逆转为雄鱼。在低浓度(0.2 μg/L)MT诱导下,黄姑鱼(Nibea albifl ora)雌鱼完全性逆转为伪雄鱼,性腺发育与正常雄鱼相比没有任何异常,但是随着MT浓度的增加,对其生长和性腺发育均产生不利影响 [86]。低浓度(50 mg/kg)MT投喂大刺鳅幼鱼,雄性通路相关基因dmrt1sox9amh表达上调且雌性通路相关基因cyp19a1afoxl2表达下调,但是随着MT投喂浓度的增加,雄性通路相关基因的表达较对照组和低浓度处理组显著下调。同时发现饲料中添加MT,大刺鳅性腺处于原始生殖细胞状态,性腺发生退化 [45]。综上,低浓度MT可以有效抑止大刺鳅卵巢发育,但性逆转效果不明显。可适当延长MT投喂实验周期,以验证是否能获得功能性雄鱼。

除了直接添加外源类固醇激素人工诱导硬骨鱼雌转雄,还可通过添加芳香化酶抑制剂(Aromatase inhibitor, AI)Fadrozole或Letrozole,抑制内源雌激素合成,降低硬骨鱼体内雌激素水平。Fadrozole处理可使三斑海猪鱼 [87]、尼罗罗非鱼 [88]发生雌向雄的性逆转。Letrozole处理尖齿胡鲶、鲤鱼(Cyprinus carpio[83]、黄颡鱼 [89],可以诱导雌鱼性逆转为功能型雄鱼。已有研究表明,添加外源雄激素MT诱导大刺鳅性逆转效果不明显 [45],后续试验可使用AI验证是否可成功诱导大刺鳅性逆转,影响大刺鳅性别分化,使雌性个体雄性化。尽管性类固醇激素可诱导未分化的性腺发生性逆转,但诱导已分化性腺的性逆转却较为困难。在硬骨鱼中,性逆转的研究主要集中在自然性逆转(Natural sex reversal, NSR)和原发性逆转(Primary sex reversal, PSR)。性腺分化为卵巢或精巢后,再诱导发生的性逆转称为次发性逆转(Secondary sex reversal, SSR),鱼类中关于次发性逆转的研究较少。使用添加AI的饲料喂养已性成熟的斜带石斑鱼,4个月后发现雌鱼性逆转为雄性 [90]。分别使用Fadrozole和Exemestane [91-92]喂养性成熟的尼罗罗非鱼、斑马鱼和日本青鳉,均可使已分化的卵巢性逆转为功能性的精巢,发生次发性逆转。然而,用Fadrozole诱导性成熟的非洲慈鲷鱼(Astatotilapia burtoni)雌鱼,不能逆转其为功能性雄鱼,但其着色、激素水平、行为方面向雄性表型转变 [93]。使用孕二烯酮(Gestodene,GES)处理性成熟的雌性食蚊鱼(Gambusia affi nis),雌性食蚊鱼臀鳍出现雄性化特征,性腺中有部分原始生殖细胞向雄性生殖细胞转化 [94]。目前未发现关于大刺鳅发生次发性逆转的研究,可考虑通过AI诱导性成熟的大刺鳅发生性逆转。

2.2.2 皮质醇 皮质醇(Cortisol)是鱼类肾间细胞分泌的主要的糖皮质激素。皮质醇不仅是检测鱼类是否受到环境应激的主要指标,也在性别调控中发挥重要作用。在褐牙鲆中,皮质醇通过抑制cyp19a1 mRNA的表达,从而导致XX雌性到雄性的性逆转 [95]。将XX型日本青鳉在性别分化期置于皮质醇环境中抑制了雌性型生殖细胞的增殖和卵巢型芳香化酶的表达,诱导性逆转为雄性表型。然而当皮质醇处理与E2连用时,雄性化作用被抵消。这表明,皮质醇通过抑制cyp19a1的表达,从而抑制雌激素的生物合成,在日本青鳉中引起雌性向雄性的性逆转 [96]。皮质醇的现有成果为研究大刺鳅雌转雄提供理论基础,除了使用雄激素和芳香酶抑制剂诱导其性别转变,还可以考虑添加皮质醇,探究是否可以解决人工养殖大刺鳅高雌率的问题。

2.3 其他环境因素

硬骨鱼的性别转换会受到其在群体中的社会地位和体型的影响,如冲绳磨塘鳢(Trimma okinawa)可以发生双向性别转变,当雄鱼从群体中消失时,体型最大的雌鱼向雄鱼发生性别转变;当雌鱼从群体中消失时,雄鱼会发生迁移,加入另一个群体,以雌鱼的身份繁衍后代 [97]。橙色斑点石斑鱼中有类似现象发生,雄鱼从社会群体中消失,攻击性占优势的雌鱼开始转变为雄鱼 [98]。在一些鱼类中性别的变化受季节的影响很大,如贝氏隆头鱼(Labrus bergylta)在繁殖季过后性别发生变化 [99]。低氧胁迫也是诱导硬骨鱼发生性逆转的手段之一,如缺氧可以将基因型XX的日本青鳉雌鱼性逆转为表型雄鱼 [100]。研究发现光周期会影响加利福尼亚滑银汉鱼(Leuresthes tenius)的性别分化,长日照下产生更多雌性,短日照处理产生更多雄性 [101]。此外,光波长也会影响鱼类性别,XX型雌性日本青鳉性别分化期使用绿光照射可诱导雌鱼发生性逆转,产生基因型为XX的可育雄鱼 [102]。在漠斑牙鲆中,环境背景色也会影响性别分化,蓝色背景下出现明显的雄性偏向 [103]。环境内分泌干扰物(Environmental endocrine disrupting chemicals, EDCs)也会使硬骨鱼发生性逆转,如南方鲇在野生条件下雌雄比例约为1∶1,而人工繁殖的南方鲇却为全雌,这种现象是由于开口饵料水蚯蚓所致,水蚯蚓体内的是EDCs诱导人工繁殖南方鲇全雌化的主要原因 [104-105]。在大刺鳅中也存在类似现象,即人工养殖条件下大刺鳅高雌化。在人工繁殖及饲养大刺鳅的过程中,转食配合饲料前会投喂一段时间水蚯蚓,而人工喂养的水蚯蚓常取自含有大量的工业废水和生活用水的污水底部,体内极大可能富集了某些环境雌激素,这些环境雌激素在鱼体内积累以后,对大刺鳅体内类固醇激素水平产生了影响,可能直接或者间接的升高了雌激素的水平,从而导致了大刺鳅的雌性化。因此可开展替代水蚯蚓的饵料实验,验证水蚯蚓是否是导致大刺鳅高雌化的直接原因。野生大刺鳅肠道微生物群落多样性显著高于人工养殖群体 [106],人工养殖环境中,尽量模拟光照、水环境等自然条件,以探究是否可以降低雌性率。

3 展望

水产养殖是现代化农业的重要产业,特别是在优质动物蛋白的可持续供应方面为全球粮食安全做出了重要贡献。大刺鳅肉味鲜美、营养丰富,含有丰富的氨基酸和不饱和脂肪酸,然而近年来大刺鳅自然种群数量明显减少,野生资源日益枯竭,开展大刺鳅种质资源保护、发展大刺鳅养殖产业已迫在眉睫。大刺鳅雌雄个体存在显著的性别二态性,雄性与雌性相比体重和体长均具有优势 [7],培育和养殖单性全雄群体是大刺鳅养殖的最佳选择。在野生环境中大刺鳅的雌雄比例约为1∶1,但在人工饲养环境中,大部分大刺鳅个体发育为生理雌鱼,表明养殖大刺鳅发生了雌性化性逆转。目前尚不明确人工饲养大刺鳅高雌化的潜在作用机制,生产上缺少足够的雄性亲鱼,直接影响大刺鳅的苗种繁殖规模、生长速度和养殖经济效益。硬骨鱼类的性别决定与分化是一个非常复杂的生物学过程,表现出性别决定方式的多样性,性别表型具有高度可塑性,除了受到遗传因素的影响,外部环境因素也会调控其性别分化,这些研究为解析大刺鳅性逆转提供了新的思路和参考。通常具有XX/XY雄性异配型性染色体的硬骨鱼类在没有外部环境因素影响时,不会发生雌转雄或者雄转雌的性逆转现象。大刺鳅的性别决定系统为XX/XY型,基于其他硬骨鱼类性别决定机制和性别控制方法,推测人工养殖大刺鳅雌性率高可能是由环境因素引起的,如温度、饵料、环境内分泌干扰物或其他化学物质等。现阶段针对大刺鳅性别决定与分化的研究较为薄弱,主要集中在性别特异性分子标记开发 [2, 14]、精巢中高表达的雄性性别相关基因如dmrt1 [45]dmrt6 [48]的克隆、分析及添加外源雄激素如MT诱导性逆转 [45],但是针对人工养殖大刺鳅高雌化的潜在作用机制、实现性别逆转、全雄制种等方面仍有许多问题需要深入研究。因此,结合硬骨鱼类的性别调控机制,针对大刺鳅的性别决定与分化,未来可从以下4个方面继续开展研究:一是探究人工饲养大刺鳅高雌化的原因及潜在作用机制:考虑饵料水蚯蚓是否是导致人工饲养大刺鳅高雌化的直接原因,可以通过其他生物饵料替代水蚯蚓进行养殖试验验证;若证实饵料水蚯蚓是导致大刺鳅高雌化的直接原因,可进一步分析水蚯蚓体内何种物质导致大刺鳅雌性化,通过高效液相色谱、质谱技术加以检测分析,分离出潜在的目标物质并通过单一目标物质添加饲喂实验加以验证。后续需要探究这些被鉴定出的目标物质导致大刺鳅雌性化的潜在作用机制,挖掘目标物质在大刺鳅体内如何影响和调控性别决定和分化的基因网络;二是围绕人工饲养大刺鳅高雌化的现象,探索温度、性类固醇激素等环境因素对大刺鳅性别变化的影响,阻断大刺鳅的雌性化性逆转,为建立大刺鳅单性种群奠定基础;三是基于大刺鳅的性别二态性特征、已开发的大刺鳅性别连锁分子标记和人工诱导性逆转技术开展分子标记辅助选育大刺鳅超雄繁殖系和全雄育种工作;四是基于其他硬骨鱼类尤其是亲缘关系较近物种的性别决定与分化研究现状发掘思路,利用基因编辑技术等遗传操作,选择鱼类中保守的性别调控关键基因进行基因编辑,探究是否能得到功能性雄鱼,进一步挖掘大刺鳅性别决定相关基因。通过上述深入研究与探索,以期为大刺鳅全雄制种奠定重要基础,为大刺鳅单性种群的规模化繁殖、优良品种的选育和种质资源的保护提供重要的理论依据,实现大刺鳅养殖业的可持续发展。

参考文献(References):
[1]
蒋小龙. 性类固醇激素在尼罗罗非鱼性别决定与分化中的作用[D]. 重庆: 西南大学, 2014.
JIANG X L. Effects of sex steroids on sex determination and differentiation of Nile tilapia[D]. Chongqing: Southwest University, 2014.
[2]
XUE L Z, GUO X F, ZHOU Y L, WANG Z W, FAN H P, LI D P, GUI J F. Screening and characterization of sex-specific markers by 2b-RAD sequencing in zig-zag eel (Mastacembelus armatus) with implication of XY sex determination system[J]. Aquaculture, 2020, 528: 735550. DOI:10.1016/j.aquaculture.2020.735550
[3]
LI X Y, GUI J F. Diverse and variable sex determination mechanisms in vertebrates[J]. Science China Life Sciences, 2018, 61(12): 1503-1514. DOI:10.1007/s11427-018-9415-7
[4]
林婷婷. 大刺鳅(Mastacembelus armatus)微卫星标记开发及野生群体遗传多样性分析[D]. 广州: 广州大学, 2017.
LIN T T. Isolation of microsatellite markers and population genetic diversity analysis in Mastacembelus armatus[D]. Guangzhou: Guangzhou University, 2017.
[5]
马本贺, 王海华, 徐先栋, 李燕华, 王梦杰, 吴斌, 陶志英. 大刺鳅消化道结构及食性研究[J]. 渔业科学进展, 2022, 43(3): 56-63. DOI:10.19663/j.issn2095-9869.20210224005
MA B H, WANG H H, XU X D, LI Y H, WANG M J, WU B, TAO Z Y. Research on structure of digestive tract and feeding habits in Mastacembelus armatus[J]. Progress in Fishery Sciences, 2022, 43(3): 56-63. DOI:10.19663/j.issn2095-9869.20210224005
[6]
樊海平, 邱曼丽, 钟全福, 薛凌展, 秦志清. 不同生长阶段野生和养殖大刺鳅营养成分的比较[J]. 安徽农业科学, 2018, 46(8): 92-96. DOI:10.13989/j.cnki.0517-6611.2018.08.027
FAN H P, QIU M L, ZHONG Q F, XUE L Z, QIN Z Q. Comparison of nutritional component of wild and cultured Mastacembelus armatus in different growth stages[J]. Journal of Anhui Agricultural Sciences, 2018, 46(8): 92-96. DOI:10.13989/j.cnki.0517-6611.2018.08.027
[7]
周惠强, 李芬, 舒琥, 钟东明, 何佩莹, 黄小琪, 陈忠凯. 大刺鳅雌雄个体形态差异分析[J]. 广东海洋大学学报, 2019, 39(1): 1-6. DOI:10.3969/j.issn.1673-9159.2019.01.001
ZHOU H Q, LI F, SHU H, ZHONG D M, HE P Y, HUANG X Q, CHEN Z K. Analysis on morphological indexes and discrimination of male and female Mastacembelus armatus[J]. Journal of Guangdong Ocean University, 2019, 39(1): 1-6. DOI:10.3969/j.issn.1673-9159.2019.01.001
[8]
XUE L Z, JIA D, XU L H, HUANG Z, FAN H P, CHEN B, YANG L Y, WANG Z W, LI D P, GAO Y. Bulk and single-cell RNA-seq reveal the sexually dimorphic expression pattern of dmrtb1 in zig-zag eel (Mastacembelus armatus)[J]. Aquaculture, 2021, 545: 737194. DOI:10.1016/j.aquaculture.2021.737194
[9]
舒琥, 江小璐, 杨华强, 林婷婷, 周惠强, 张明清, 查广才. 华南地区7个大刺鳅野生群体的形态差异分析[J]. 广州大学学报(自然科学版), 2017, 16(3): 8-14. DOI:10.3969/j.issn.1671-4229.2017.03.002
SHU H, JIANG X L, YANG H Q, LIN T T, ZHOU H Q, ZHANG M Q, ZHA G C. Analysis of morphological variations among seven wild populations of Mastacembelus armatus in South China area[J]. Journal of Guangzhou University (Natural Science Edition), 2017, 16(3): 8-14. DOI:10.3969/j.issn.1671-4229.2017.03.002
[10]
曾庆祥, 方园, 曾学平, 刘斌, 刘德亭, 张建铭, 张家海, 黄雅贞. 大刺鳅的生物学特性与人工繁养殖技术[J]. 中国水产, 2016(3): 70-73. DOI:10.3969/j.issn.1002-6681.2016.03.030
ZENG Q X, FANG Y, ZENG X P, LIU B, LIU D T, ZHANG J M, ZHANG J H, HUAGN Y Z. The biological characteristics and artificial breeding techniques of Mastacembelus armatus[J]. China Fisheries, 2016(3): 70-73. DOI:10.3969/j.issn.1002-6681.2016.03.030
[11]
杨华强, 李强, 舒琥, 岳磊, 林婷婷, 刘远波. 华南及邻近地区大刺鳅遗传多样性的ISSR分析[J]. 水生生物学报, 2016, 40(1): 63-70. DOI:10.7541/2016.9
YANG H Q, LI Q, SHU H, YUE L, LIN T T, LIU Y B. ISSR analysis of genetic diversity of Mastacembelus armatus in South China and adjacent areas[J]. Acta Hydrobiologica Sinica, 2016, 40(1): 63-70. DOI:10.7541/2016.9
[12]
江小璐. 华南及邻近地区不同群体大刺鳅的遗传多样性及亲缘地理研究[D]. 广州: 广州大学, 2018.
JIANG X L. Genetic diversity and phylogeography of different populations of Mastacembelus armatus in Southern China and its adjacent areas[D]. Guangzhou: Guangzhou University, 2018.
[13]
高尚, 李跃飞, 李捷, 陈蔚涛. 华南地区大刺鳅的遗传结构与群体动态历史研究[J]. 南方水产科学, 2023, 19(2): 42-49. DOI:10.12131/20220200
GAO S, LI Y F, LI J, CHEN W T. Genetic structure and demographic history of Mastacembelus armatus in Southern China[J]. South China Fisheries Science, 2023, 19(2): 42-49. DOI:10.12131/20220200
[14]
QIN W J, HAN C, YANG J L, YU Z D, FENG Y W, WU Y X, LU B Y, CUI M X, SHU H. Development of genetic sex markers of zig-zag eel (Mastacembelus armatus) by a NGS method[J]. Aquaculture, 2023, 571: 739498. DOI:10.1016/j.aquaculture.2023.739498
[15]
WANG D, MAO H L, CHEN H X, LIU H Q, GUI J F. Isolation of Y-and X-linked SCAR markers in yellow catfish and application in the production of all-male populations[J]. Animal Genetics, 2009, 40(6): 978-981. DOI:10.1111/j.1365-2052.2009.01941.x
[16]
CNAANI A, LEE B Y, ZILBERMAN N, OZOUF-COSTAZ C, HULATA G, RON M, D'HONT A, BAROILLER J F, D'COTTA H, PENMAN D J, TOMASINO E, COUTANCEAU J P, PEPEY E, SHIRAK A, KOCHER T D. Genetics of sex determination in tilapiine species[J]. Karger, 2008, 2(1): 43-54. DOI:10.1159/000117718
[17]
WANG T, LI Z, YU Z X, WANG Z W, LIAN Z Q, DU W X, ZHAO X, WANG M T, MIAO C, DING M, WANG Y, ZHOU L, ZHANG X J, LI X Y, GUI J F. Production of YY males through self-fertilization of an occasional hermaphrodite in Lanzhou catfish (Silurus lanzhouensis)[J]. Aquaculture, 2021, 539: 736622. DOI:10.1016/j.aquaculture.2021.736622
[18]
WU X, ZHAO L, FAN Z, LU B Y, CHEN J L, TAN D J, JIANG D N, TAO W J, WANG D S. Screening and characterization of sex-linked DNA markers and marker-assisted selection in blue tilapia (Oreochromis aureus)[J]. Aquaculture, 2021, 530: 735934. DOI:10.1016/j.aquaculture.2020.735934
[19]
CHEN S L, ZHANG G J, SHAO C W, HUANG Q F, LIU G, ZHANG P, SONG W T, AN N, CHALOPIN D, VOLFF J N, HONG Y H, LI Q Y, SHA Z X, ZHOU H L, XIE M S, YU Q L, LIU Y, XIANG H, WANG N, WU K, YANG C G, ZHOU Q, LIAO X L, YANG L F, HU Q M, ZHANG J L, MENG L, JIN L J, TIAN Y S, LIAN J M, YANG J F, MIAO G D, LIU S S, LIANG Z, YAN F, LI Y Z, SUN B, ZHANG H, ZHANG J, ZHU Y, DU M, ZHAO Y W, SCHARTL M, TANG Q S, WANG J. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle[J]. Nature Genetics, 2014, 46(3): 253-260. DOI:10.1038/ng.2890
[20]
VALE L, DIEGUEZ R, SÁNCHEZ L, MARTÍNEZ P, VIÑAS A. A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus)[J][J]. Molecular Biology Reports, 2014, 41: 1501-1509. DOI:10.1007/s11033-013-2995-3
[21]
KUHL H, GUIGUEN Y, HÖHNE C, KREUZ E, DU K, KLOPP C, LOPEZ-ROQUES C, YEBRA-PIMENTEL E S, CIOEPAC M, GESSNER J, HOLOSTENCO D, KLEINER W, KOHLMANN K, LAMATSCH D K, PROKOPOV D, BESTIN A, BONPUNT E, DEBEUF B, HAFFRAY P, MORVEZEN R, PATRICE P, SUCIU R, DIRKS R, WUERTZ S, KLOAS W, SCHARTL M, STÖCK M. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376(1832): 20200089. DOI:10.1098/RSTB.2020.0089
[22]
洪云汉, 周暾. 短颌鲚的核型及其ZZ-ZO性染色体[J]. 遗传, 1984, 6(4): 12-14. DOI:10.16288/j.yczz.1984.04.007
HONG Y H, ZHOU T. The karyotype and ZZ-ZO sex chromosomes of Coilia brachygnathus[J]. Hereditas, 1984, 6(4): 12-14. DOI:10.16288/j.yczz.1984.04.007
[23]
XU D D, LOU B, XU H X, LI S L, GENG Z. Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus[J]. Marine Biotechnology, 2013, 159(2): 221-229. DOI:10.1007/s10126-012-9480-1
[24]
HOFSTEN J V, OLSSON P E. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes[J]. Reproductive Biology and Endocrinology, 2005, 3(1): 63. DOI:10.1186/1477-7827-3-63
[25]
徐东杰, 谢熙, 王蒙恩, 王振亚, 朱冬发. Sox基因家族在水生动物性腺发育中的功能研究进展[J]. 生物学杂志, 2022, 39(3): 97-102.
XU D J, XIE X, WANG M E, WANG Z Y, ZHU D F. Research advance on the function of Sox gene family in aquatic animal gonadal development[J]. Journal of Biology, 2022, 39(3): 97-102.
[26]
SINCLAIR A H, BERTA P, PALMER M S, HAWKINS J R, GRIFFITHS B L, SMITH M J, FOSTER J W, FRISCHAUF A M, LOVELL-BADGE R, GOODFELLOW P N. A Gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif[J]. Nature, 1990, 346(6281): 240-244. DOI:10.1038/346240a0
[27]
许美娜, 朱奕舟, 林思远, 陈瑶生, 何祖勇. CRISPR/Cas9基因编辑技术在猪育种中的研究进展[J]. 广东农业科学, 2022, 49(8): 87-96. DOI:10.16768/j.issn.1004-874X.2022.08.011
XU M N, ZHU Y Z, LIN S Y, CHEN Y S, HE Z Y. Progress of the application of CRISPR/Cas9 gene editing technology in pig breeding[J]. Guangdong Agricultural Sciences, 2022, 49(8): 87-96. DOI:10.16768/j.issn.1004-874X.2022.08.011
[28]
RAJAKUMAR A, SENTHILKUMARAN B. Sox3 binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish[J]. Journal of Steroid Biochemistry and Molecular Biology, 2016, 158: 90-103. DOI:10.1016/j.jsbmb.2016.01.003
[29]
TAKEHANA Y, MATSUDA M, MYOSHO T, SUSTER M L, KAWAKAMI K, SHIN-I T, KOHARA Y, KUROKI Y, TOYODA A, FUJIYAMA A, HAMAGUCHI S, SAKAIZUMI M, NARUSE K. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena[J]. Nature Communications, 2014, 5: 5157. DOI:10.1038/ncomms5157
[30]
马丽曼. 许氏平鲉性别相关基因Sox3Sox9Dmrt1的研究[D]. 青岛: 中国海洋大学, 2014.
MA L M. Study on sex related genes Sox3, Sox9 and Dmrtl in black rockfish, Sebastes schlegeli[D]. Qingdao: Ocean University of China, 2014.
[31]
KLÜVER N, KONDO M, HERPIN A, MITANI H, SCHARTL M. Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization[J]. Development Genes and Evolution, 2005, 215(6): 297-305. DOI:10.1007/s00427-005-0477-x
[32]
CHIANG E F, PAI C I, WYATT M, YAN Y L, POSTLETHWAIT J, CHUNG B C. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites[J]. Developmental Biology, 2001, 231(1): 149-163. DOI:10.1006/dbio.2000.0129
[33]
WEI L, YANG C, TAO W J, WANG D S. Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the Nile tilapia (Oreochromis niloticus)[J]. International Journal of Molecular Sciences, 2016, 17(3): 270-284. DOI:10.3390/ijms17030270
[34]
LI X J, YU H Y, WANG Y J, LIU X B, LIU Y Z, QU J B, WANG X B. Roles of two sox9 genes during gonadal development in Japanese flounder: Sex differentiation, spermatogenesis and gonadal function maintenance[J]. International Journal of Molecular Sciences, 2018, 19(2): 512. DOI:10.3390/ijms19020512
[35]
ZHAO Y L, ZHANG Y, ZHONG Y, GUO J, LU M Y, GUI L, LI M Y. Molecular identification and expression analysis of foxl2 and sox9b in Oryzias celebensis[J]. Aquaculture and Fisheries, 2020, 6(5): 471-478. DOI:10.1016/j.aaf.2020.06.009
[36]
FAN M, YANG W, ZHANG W M, ZHANG L H. The ontogenic gonadal transcriptomes provide insights into sex change in the ricefield eel Monopterus albus[J]. BMC Zoology, 2022, 7(1): 56-70. DOI:10.1186/S40850-022-00155-4
[37]
钟东明. 大刺鳅生长相关基因克隆及功能研究[D]. 广州: 广州大学, 2020. DOI: 10.27040/d.cnki.ggzdu.2020.000357.
ZHONG D M. Molecular cloning and functional characterization of genes related to growth regulation in Mastacembelus armatus[D]. Guangzhou: Guangzhou University, 2020. DOI: 10.27040/d.cnki.ggzdu.2020.000357.
[38]
HODGKIN J. The remarkable ubiquity of DM domain factors as regulators of sexual phenotype: ancestry or aptitude?[J]. Genes Development, 2002, 16(18): 2322-2326. DOI:10.1101/gad.1025502
[39]
BURTIS K C, BAKER B S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides[J]. Cell, 1989, 56(6): 997-1010. DOI:10.1016/0092-8674(89)90633-8
[40]
SHEN M M, HODGKIN J. Mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans[J]. Cell, 1988, 54(7): 1019-1031. DOI:10.1016/0092-8674(88)90117-1
[41]
WEXLER J R, PLACHETZKI D C, KOPP A. Pan-metazoan phylogeny of the DMRT gene family: A framework for functional studies[J]. Development Genes and Evolution, 2014, 224(3): 175-181. DOI:10.1007/s00427-014-0473-0
[42]
闫宁宁. 大口黑鲈Dmrt1基因的克隆与表达分析[D]. 上海: 上海海洋大学, 2019. DOI: 10.27314/d.cnki.gsscu.2019.000010.
YAN N N. Cloning and expression of the Dmrt1 gene of largemouth bass (Micropterus salmoides)[D]. Shanghai: Shanghai Ocean University, 2019. DOI: 10.27314/d.cnki.gsscu.2019.000010.
[43]
YAN N N, HU J, LI J, DONG J J, SUN C F, YE X. Genomic organization and sexually dimorphic expression of the dmrt1 gene in largemouth bass (Micropterus salmoides)[J]. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 2019, 234: 68-77. DOI:10.1016/j.cbpb.2019.05.005
[44]
WEI L, LI X Y, LI M H, TANG Y H, WEI J, WANG D S. Dmrt1 directly regulates the transcription of the testis-biased sox9b gene in Nile tilapia (Oreochromis niloticus)[J]. Gene, 2019, 687: 109-115. DOI:10.1016/j.gene.2018.11.016
[45]
覃伟健. 大刺鳅(Mastacembelus armatus)遗传性别标记的开发及性逆转研究[D]. 广州: 广州大学, 2023.
QIN W J. Development of genetic sex markers and sex reversal study of Mastacembelus armatus[D]. Guangzhou: Guangzhou University, 2023.
[46]
WU G C, CHIU P C, LIN C J, LYU Y S, LAN D S, CHANG C F. Testicular dmrt1 is involved in the sexual fate of the ovotestis in the protandrous black porgy[J]. Biology of Reproduction, 2012, 86(2): 41-51. DOI:10.1095/biolreprod.111.095695
[47]
DONG J J, LI J, HU J, SUN C F, TIAN Y Y, LI W H, YAN N N, SUN C X, SHENG X H, YANG S, SHI Q, YE X. Comparative genomics studies on the dmrt gene family in fish[J]. Frontiers in Genetics, 2020, 11: 1396. DOI:10.3389/fgene.2020.563947
[48]
薛凌展. 大刺鳅基因组及性腺发育的生理机制研究[D]. 武汉: 华中农业大学, 2021. DOI: 10.27158/d.cnki.ghznu.2021.000941.
XUE L Z. Research of the genome and gonad development physiological mechanism of zig-zag eel (Mastacembelus armatus)[D]. Wuhan: Huazhong Agricultural University, 2021. DOI: 10.27158/d.cnki.ghznu.2021.000941.
[49]
ROLLAND A D, LAREYRE J J, GOUPIL A S, MONTFORT J, RICORDEL M J, ESQUERRÉ D, HUGOT K, HOULGATTE R, CHALMEL F, GAC F L. Expression profiling of rainbow trout testis development identifies evolutionary conserved genes involved in spermatogenesis[J]. BMC Genomics, 2009, 10: 546-567. DOI:10.1186/1471-2164-10-546
[50]
KLÜVER N, PFENNIG F, PALA I, STORCH K, SCHLIEDER M, FROSCHAUER A, GUTZEIT H O, SCHARTL M. Differential expression of anti-müllerian hormone (amh) and anti-müllerian hormone receptor type Ⅱ (amhrⅡ) in the teleost medaka[J]. Developmental Dynamics, 2007, 236(1): 271-281. DOI:10.1002/dvdy.20997
[51]
SMITH E K, GUZMÁN J M, LUCKENBACH J A. Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria)[J]. Part B: Biochemistry and Molecular Biology, 2013, 165(2): 125-137. DOI:10.1016/j.cbpb.2013.03.011
[52]
WU G C, CHI P C, LYU Y S, CHANG C F. The expression of amh and amhr2 is associated with the development of gonadal tissue and sex change in the protandrous black porgy, Acanthopagrus schlegeli[J]. Biology of Reproduction, 2010, 83(3): 443-453. DOI:10.1095/biolreprod.110.084681
[53]
WU G C, LI H W, LUO J W, CHEN C, CHANG C F. The potential role of Amh to prevent ectopic female development in testicular tissue of the protandrous black porgy, Acanthopagrus Schlegelii[J]. Biololy of Reproduction, 2015, 92(6): 158-170. DOI:10.1095/biolreprod.114.126953
[54]
HATTORI R S, MURAI Y, OURA M, MASUDA S, MAJHI S K, SAKAMOTO T, FERNANDINO J I, SOMOZA G M, YOKOTA M, STRÜSSMANNA C A. A Y-linked anti-müllerian hormone duplication takes over a critical role in sex determination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2955-2959. DOI:10.1073/pnas.1018392109
[55]
LI M H, SUN Y, ZHAO J, SHI H J, ZENG S, YE K, JIANG D N, ZHOU L Y, SUN L N, TAO W J, NAGAHAMA Y, KOCHER T D, WANG D S. A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y Chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus[J]. PLoS Genetics, 2015, 11(11). DOI:10.1371/journal.pgen.1005678
[56]
LI M H, LIU X Y, LU B Y, SUN L N, WANG D S. Sexual plasticity is affected by sex chromosome karyotype and copy number of sex determiner in tilapia[J]. Aquaculture, 2022, 561: 738664. DOI:10.1016/j.aquaculture.2022.738664
[57]
胡青. 黄鳝性逆转相关基因的克隆及其调控机制的研究[D]. 武汉: 华中农业大学, 2015.
HU Q. Molecular cloning of the sex reversal related genes and analysis of their regulation mechanism in Monopterus albus[D]. Wuhan: Huazhong Agricultural University, 2015.
[58]
吴昊伟, 王倩, 荣萍, 付春雪, 贾沛轩, 曲宪成. 黄鳝性腺发育过程中amh和sox9基因的表达分析[J]. 合肥工业大学学报(自然科学版), 2016, 39(2): 275-279. DOI:10.3969/j.issn.1003-5060
WU H W, WANG Q, RONG P, FU C X, JIA P X, QU X C. Expression analysis of amh and sox9 in gonads development during sex reversal in rice field eel[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(2): 275-279. DOI:10.3969/j.issn.1003-5060
[59]
GUIGUEN Y, FOSTIER A, PIFERRER F, CHANG C F. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish[J]. General and Comparative Endocrinology, 2010, 165(3): 352-366. DOI:10.1016/j.ygcen.2009.03.002
[60]
TCHOUDAKOVA A, CALLARD G V. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary[J]. Endocrinology, 1998, 139(4): 2179-2189. DOI:10.1210/endo.139.4.5899
[61]
PIFERRER F, BLÁZQUEZ M. Aromatase distribution and regulation in fish[J]. Fish Physiology and Biochemistry, 2005, 31: 215-226. DOI:10.1007/s10695-006-0027-0
[62]
ZHANG Y, ZHANG W M, YANG H Y, ZHOU W L, HU C Q, ZHANG L H. Two cytochrome P450 aromatase genes in the hermaphrodite ricefield eel Monopterus albus: mRNA expression during ovarian development and sex change[J]. Journal of Endocrinology, 2008, 199(2): 317-331. DOI:10.1677/JOE-08-0303
[63]
PATIL J G, GUNASEKERA R M. Tissue and sexually dimorphic expression of ovarian and brain aromatase mRNA in the Japanese medaka (Oryzias latipes): Implications for their preferential roles in ovarian and neural differentiation and development[J]. General and Comparative Endocrinology, 2008, 158(1): 131-137. DOI:10.1016/j.ygcen.2008.05.016
[64]
JENG S R, DUFOUR S, CHANG C F. Differential expression of neural and gonadal aromatase enzymatic activities in relation to gonadal development in Japanese eel, Anguilla japonica[J]. Journal of Experimental Zoology, 2005, 303(9): 802-812. DOI:10.1002/jez.a.194
[65]
LAU E S W, ZHANG Z W, QIN M M, GE W. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation[J]. Scientifi c Reports, 2016, 6: 37357. DOI:10.1038/srep37357
[66]
吕晴霁. foxl2foxl3在斜带石斑鱼性腺发育及性逆转过程中的表达研究[D]. 广州: 华南农业大学, 2018.
LYU Q J. Expression of foxl2 and foxl3 during gonadal development and sex reversal induced by MT in grouper (Epinephelus coioides)[D]. Guangzhou: South China Agricultural University, 2018.
[67]
WEBSTER K A, SCHACH U, ORDAZ A, STEINFELD J S, DRAPER B W, SIEGFRIED K R. Dmrt1 is necessary for male sexual development in zebrafish[J]. Developmental Biology, 2017, 422(1): 33-46. DOI:10.1016/j.ydbio.2016.12.008
[68]
ZHOU H Q, ZHONG D M, ZHANG M Q, ZHANG C P, QIN W J, CUI M X, HAN C, SHU H. Molecular characterization and expression profiling of foxl2 in zig-zag eel (Mastacembelus armatus)[J]. Gene Reports, 2023, 33: 101830. DOI:10.1016/j.genrep.2023.101830
[69]
WANG D S, KOBAYASHI T, ZHOU L Y, PAUL-PRASANTH B, IJIRI S, SAKAI F, OKUBO K, MOROHASHI K, NAGAHAMA Y. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1[J]. Molecular Endocrinology, 2007, 21(3): 712-725. DOI:10.1210/me.2006-0248
[70]
ZHANG X B, LI M R, MA H, LIU X Y, SHI H J, LI M H, WANG D S. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia[J]. Endocrinology, 2017, 158(8): 2634-2647. DOI:10.1210/en.2017-00127
[71]
JIANG W B, YANG Y H, ZHAO D M, LIU X Y, DUAN J D, XIE S G, ZHAO H B. Effects of sexual steroids on the expression of foxl2 in Gobiocypris rarus[J]. Comparative Biochemistry and Physiology, 2011, 160(4): 187-193. DOI:10.1016/j.cbpb.2011.08.005
[72]
CRESPO B, LAN-CHOW-WING O, ROCHA A, ZANUY S, GÓMEZ A. Foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts[J]. General and Comparative Endocrinology, 2013, 194: 81-93. DOI:10.1016/j.ygcen.2013.08.016
[73]
YANG Y J, WANG Y, LI Z, ZHOU L, GUI J F. Sequential, divergent and cooperative requirements of foxl2a and foxl2b in ovary development and maintenance of zebrafish[J]. Genetics, 2017, 205(4): 1551-1572. DOI:10.1534/genetics.116.199133
[74]
CONOVER D. O, KYNARD B E[J]. Science, 213, 213(4507): 577-579. DOI:10.1126/science.213.4507.577
[75]
LUCKENBACH J A, BORSKI R J, DANIELS H V, GODWIN J. Sex determination in flatfishes: mechanisms and environmental influence[J]. Seminars in Cell & Developmental Biology, 2009, 20(3): 256-263. DOI:10.1016/j.semcdb.2008.12.002
[76]
SUN L X, WANG Y Y, ZHAO Y, WANG H, LI N, JI X S. Global DNA methylation changes in Nile tilapia gonads during high temperature-induced masculinization[J]. PLoS One, 2016, 11(8). DOI:10.1371/journal.pone.0158483
[77]
SUN L X, TENG J, ZHAO Y, LI N, WANG H, JI X S. Gonad transcriptome analysis of high-temperature-treated females and high-temperature-induced sex-reversed neomales in Nile tilapia[J]. International Journal of Molecular Sciences, 2018, 19(3): 689. DOI:10.3390/ijms19030689
[78]
LI X Y, LIU X L, ZHU Y J, ZHANG J, DING M, WANG M T, WANG Z W, LI Z, ZHANG X J, ZHOU L, GUI J F. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish[J]. Heredity, 2018, 121(1): 64-74. DOI:10.1038/s41437-017-0049-7
[79]
YU Y, CHEN M, LU Z Y, LIU Y, LI B, GAO Z X, SHEN Z G. High-temperature stress will put the thermo-sensitive teleost yellow catfish (Tachysurus fulvidraco) in danger through reducing reproductivity[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113638. DOI:10.1016/j.ecoenv.2022.113638
[80]
WANG H P, GAO Z X, RAPP D, O'BRYANT P, YAO H, CAO X J. Effects of temperature and genotype on sex determination and sexual size dimorphism of bluegill sunfish Lepomis macrochirus[J]. Aquaculture, 2014, 420: 64-71. DOI:10.1016/j.aquaculture.2013.09.010
[81]
沈志刚. 黄颡鱼与蓝鳃太阳鱼性别控制及性别决定机制研究[D]. 武汉: 华中农业大学, 2014.
SHEN Z G. Study on sex control and sex-determining mechanism in yellow catfish Pelteobagrus fulvidraco and bluegill sunfish Leponis macrochirus[D]. Wuhan: Huazhong Agricultural University, 2014.
[82]
YAMAMOTO T. Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes)[J]. Journal of Experimental Zoology, 1958, 137(2): 227-263. DOI:10.1002/jez.1401370203
[83]
SINGH A K. Introduction of modern endocrine techniques for the production of monosex population of fishes[J]. General and Comparative Endocrinology, 2013, 181: 146-155. DOI:10.1016/j.ygcen.2012.08.027
[84]
CHEN L L, JIANG X L, FENG H W, SHI H J, SUN L N, TAO W J, XIE Q P, WANG D S. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption[J]. Journal of Endocrinology, 2016, 228(3): 205-218. DOI:10.1530/JOE-15-0432
[85]
WANG Q, HUANG M W, PENG C, WANG X, XIAO L, WANG D S, CHEN J X, ZHAO H H, ZHANG H F, LI S S, YANG H R, LIU Y, LIN H R, ZHANG Y. MT-feeding-induced impermanent sex reversal in the orange-spotted grouper during sex differentiation[J]. International Journal of Molecular Sciences, 2018, 19(9): 2828. DOI:10.3390/ijms19092828
[86]
XU D D, YANG F, CHEN R Y, LOU B, ZHAN W, HAYASHIDA T, TAKEUCHI Y. Production of neo-males from gynogenetic yellow drum through 17α-methyltestosterone immersion and subsequent application for the establishment of all-female populations[J]. Aquaculture, 2018, 489: 154-161. DOI:10.1016/j.aquaculture.2018.02.015
[87]
NOZU R, KOJIMA Y, NAKAMURA M. Short term treatment with aromatase inhibitor induces sex change in the protogynous wrasse, Halichoeres trimaculatus[J]. General and Comparative Endocrinology, 2009, 161: 360-364. DOI:10.1016/j.ygcen.2009.01.024
[88]
GENNOTTE V, KINKELA P M, ULYSSE B, DJÉTOUAN D A, SOMPAGNIMDI F B, TOMSON T, MÉLARD C, ROUGEOT C. Brief exposure of embryos to steroids or aromatase inhibitor induces sex reversal in Nile tilapia (Oreochromis niloticus)[J]. Journal of Experimental Zoology Part, A: Ecological Genetics and Physiology, 2015, 323(1): 31-38. DOI:10.1002/jez.1893
[89]
杨天毅, 熊阳, 丹成, 郭稳杰, 刘汉勤, 桂建芳, 梅洁. 利用鱼类性逆转技术创制黄颡XX雄鱼的方法[J]. 水生生物学报, 2018, 42(5): 871-878. DOI:10.7541/2018.107
YANG T Y, XIONG Y, DAN C, GUO W J, LIU H Q, GUI J F, MEI J. Production of XX male yellow catfish by sex-reversal technology[J]. Acta Hydrobiologica Sinica, 2018, 42(5): 871-878. DOI:10.7541/2018.107
[90]
TSAI Y J, LEE M F, CHEN C Y, CHANG C F. Development of gonadal tissue and aromatase function in the protogynous orange-spotted grouper Epinephelus coioides[J]. Zoological Studies, 2011, 50(6): 693-704. DOI:10.1139/Z11-084
[91]
PAUL-PRASANTH B, BHANDARI R K, KOBAYASHI T, HORIGUCHI R, KOBAYASHI Y, NAKAMOTO M, SHIBATA Y, SAKAI F, NAKAMURA M, NAGAHAMA Y. Estrogen oversees the maintenance of the female genetic program in terminally differentiated gonochorists[J]. Scientific Reports, 2013, 3: 2857-2862. DOI:10.1038/srep02862
[92]
TAKATSU K, MIYAOKU K, ROY S R, MURONO Y, SAGO T, ITAGAKI H, NAKAMURA M, TOKUMOTO T. Induction of female-to-male sex change in adult zebrafish by aromatase inhibitor treatment[J]. Scientific Reports, 2013, 3: 3396-3400. DOI:10.1038/srep03400
[93]
GÖPPERT C, HARRIS R M, THEIS A, BOILA A, HOHL S, RüEGG A, HOFMANN H A, SALZBURGERA W, BÖHNEA A. Inhibition of aromatase induces partial sex change in a cichlid fish: distinct functions for sex steroids in brains and gonads[J]. Sexual Development, 2016, 10(2): 97-110. DOI:10.1159/000445463
[94]
冯婷茵, 邓希楷, 邢珂. 基于单细胞水平的孕二烯酮诱导雌性西部食蚊鱼雄性化的研究[J]. 广东农业科学, 2023, 50(6): 126-136. DOI:10.16768/j.issn.1004-874X.2023.06.015
FENG T Y, DENG X K, XING K. Exploration of GES-induced masculinization of Gambusia affi nis based on single cell level[J]. Guangdong Agricultural Sciences, 2023, 50(6): 126-136. DOI:10.16768/j.issn.1004-874X.2023.06.015
[95]
YAMAGUCHI T, YOSHINAGA N, YAZAWA T, GEN K, KITANO T. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder[J]. Endocrinology, 2010, 151(8): 3900-3908. DOI:10.1210/en.2010-0228
[96]
KITANO T, HAYASHI Y, SHIRAISHI E, KAMEI Y. Estrogen rescues estrogen rescues masculinization of genetically female medaka by exposure to cortisol or high temperature[J]. Molecular Reproduction & Development, 2012, 79(10): 719-726. DOI:10.1002/mrd.22080
[97]
MANABE H, ISHIMURA M, SHINOMIYA A, SUNOBE T. Field evidence for bi-directional sex change in the polygynous gobiid fish Trimma okinawae[J]. Journal of Fish Biology, 2007, 70: 600-609. DOI:10.1111/j.1095-8649.2007.01338.x
[98]
CHEN J X, PENG C, HUANG J J, SHI H R, XIAO L, TANG L, LIN H R, LI S S, ZHANG Y. Physical interactions facilitate sex change in the protogynous orange-spotted grouper, Epinephelus coioides[J]. Journal of Fish Biology, 2021, 98(5): 1308-1320. DOI:10.1111/jfb.14663
[99]
MUNCASTER S, NORBERG B, ANDERSSON E. Natural sex change in the temperate protogynous ballan wrasse Labrus bergylta[J]. Journal of Fish Biology, 2013, 82(6): 1858-1870. DOI:10.1111/jfb.12113
[100]
CHEUNG C H Y, CHIU J M Y, WU R S S. Hypoxia turns genotypic female medaka fish into phenotypic males[J]. Ecotoxicology, 2014, 23(7): 1260-1269. DOI:10.1007/s10646-014-1269-8
[101]
BROWN E E, BAUMANN H, CONOVER D O. Temperature and photoperiod effects on sex determination in a fish[J]. Journal of Experimental Marine Biology and Ecology, 2014, 461: 39-43. DOI:10.1016/j.jembe.2014.07.009
[102]
HAYASAKA O, TAKEUCHI Y, SHIOZAKI K, ANRAKU K, KOTANI T. Green light irradiation during sex differentiation induces female-to-male sex reversal in the medaka Oryzias latipes[J]. Scientifi c Reports, 2019, 9(1): 2383-2390. DOI:10.1038/s41598-019-38908-w
[103]
MANKIEWICZ J L, GODWIN J, HOLLER B L, TURNER P M, MURASHIGE R, SHAMEY R, DANIELS H V, BORSKI R J. Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination[J]. Integrative and Comparative Biology, 2013, 53(4): 755-765. DOI:10.1093/icb/ict093
[104]
董然然. 环境内分泌干扰物质对人工繁殖南方鲇的雌性化作用[D]. 重庆: 西南大学, 2014.
DONG R R. Effects of EDCs on sex as demonstrated by feminization of artificially reared southern catfish[D]. Chongqing: Southwest University, 2014.
[105]
徐涛, 孙刚, 房岩, 胡子祎. 环境激素的作用机制及研究进展[J]. 广东农业科学, 2011, 38(23): 155-157. DOI:10.16768/j.issn.1004-874X.2011.23.014
XU T, SUN G, FANG Y, HU Z Y. Action mechanism and research advances of environmental hormone[J]. Guangdong Agricultural Sciences, 2011, 38(23): 155-157. DOI:10.16768/j.issn.1004-874X.2011.23.014
[106]
LIU X J, FAN Y Q, MO T, CHEN Q X, CHEN W T. Comparative study of the gut microbiota community between the farmed and wild Mastacembelus armatus (Zig-Zag Eel)[J]. Metabolites, 2022, 12(12): 1193-1204. DOI:10.3390/metabo12121193

(责任编辑     陈丽娥)