文章摘要
刘欢瑶 1 ,孟 岑 2,邹冬生 1 ,吴金水 2.基于 BME-GWR 法的景观单元土壤有机碳密度空间预测[J].广东农业科学,2021,48(2):75-83
查看全文    HTML 基于 BME-GWR 法的景观单元土壤有机碳密度空间预测
Spatial Prediction of Soil Organic Carbon Density in Landscape Unit Based on BME-GWR Method
  
DOI:10.16768/j.issn.1004-874X.2021.02.010
中文关键词: 贝叶斯最大熵(BME)  地理加权回归(GWR)  土壤有机碳密度  软数据  土地利用类型
英文关键词: Bayesian maximum entropy(BME)  geographically weighted regression(GWR)  soil organic carbon density  soft data  soil utilization type
基金项目:湖南省教育厅科学研究项目(18C0149)
作者单位
刘欢瑶 1 ,孟 岑 2,邹冬生 1 ,吴金水 2 1. 湖南农业大学资源环境学院湖南 长沙 410128 2. 中国科学院亚热带生态农业研究所湖南 长沙 410125 
摘要点击次数: 1856
全文下载次数: 862
中文摘要:
      【目的】在预测土壤有机碳密度(SOCD)空间分布时,充分利用相关具有不确定性的或先验分布 的多源数据,以提高其预测精度。【方法】在亚热带红壤丘陵区选取具有代表性的农业生态景观单元为研究区, 以环境因子作为辅助变量,利用地理加权回归模型(GWR)、贝叶斯最大熵结合地理加权回归模型(BME-GWR)、 按土地利用类型估算的贝叶斯最大熵结合地理加权回归模型(BME-GWRL)三种方法,计算并比较其对 SOCD 的空间预测结果的影响。【结果】BME-GWR 和 BME-GWRL 模型方法对 SOCD 的空间异质性有更强的解释能力。 BME-GWR 和 BME-GWRL 模型的交叉验证结果的决定系数(R2)分别为 0.81、0.79,均方根误差(RMSE)分 别为 0.35、0.33,平均绝对拟合误差(MAE)分别为 0.21、0.19,模拟精度高于 GWR 模型。结合辅助变量的软 数据可以更好地体现 SOCD 的空间局部特征,尤其是 BME-GWRL 模型采用了各土地利用类型的空间范围内拟合 的软数据,比不划分土地利用类型直接以整个研究范围模拟(BME-GWR 模型)的结果更准确。【结论】BMEGWRL 考虑了软数据的估算单元的不确定性,可为合理利用多源辅助数据、提高模拟精度提供有效方法。
英文摘要:
      【Objective】The study was to make full use of the multi-source data with uncertainty or prior distribution in improving spatial prediction accuracy of soil organic carbon density(SOCD).【Method】The typical agricultural landscape unit of subtropical red soil hills were selected as the research area, and the environmental factors as auxiliary variables. Three methods were used to calculate and compare the results of spatial prediction for SOCD, including geographically weighted regression model(GWR), Bayesian maximum entropy combined with geographically weighted regression model(BME-GWR), and Bayesian maximum entropy combined with geographically weighted regression model estimated by land use type(BME-GWRL).【Results】BME-GWR and BME-GWRL model had stronger ability to explain the spatial heterogeneity of SOCD. The leave-one-out cross validation results of determination coefficient(R2) of BME-GWR and BME-GWRL models were 0.81 and 0.79, the root mean square errors(RMSE)of BME-GWR and BMEGWRL models were 0.35 and 0.33, and the mean absolute fitting errors(MAE)of BME-GWR and BME-GWRL models were 0.19 and 0.21, respectively. These two methods had a higher fitting accuracy than GWR model, which could better reflect the spatial local characteristics of SOCD with auxiliary variables as soft data. In particular, BME-GWRL model used the soft data extracted from the prediction of SOCD under various land use types, and the prediction result was more accurate than that of BME-GWR model, of which soft data was directly simulated in the whole study area without considering land use types. 【Conclusion】BME-GWRL considers the uncertainty of the estimation unit of soft data, which can provide an effective method for improving the accuracy of spatial prediction with rational utilization of multi-source auxiliary data.
  查看/发表评论  下载PDF阅读器

手机扫一扫看