文章摘要
姜百臣冯凯杰彭思喜.基于改进持支向量机的猪肉价格预测研究[J].广东农业科学,2018,45(12):158-164
查看全文    HTML 基于改进持支向量机的猪肉价格预测研究
Research on pork price prediction based on improved support vector machine
  
DOI:10.16768/j.issn.1004-874X.2018.12.026
中文关键词: 猪肉价格预测  支持向量机  遗传算法  集成经验模态分解;猪周期
英文关键词: pork price prediction  support vector machine  genetic algorithm  integrated empirical mode decomposition  hog cycle
基金项目:广东省自然科学基金(2017A030313425);广州市科技计划项目(201806030008)
作者单位
姜百臣冯凯杰彭思喜 华南农业大学经济管理学院广东 广州 510642 
摘要点击次数: 1510
全文下载次数: 927
中文摘要:
      针对近年频现“价高伤民,价贱伤农”的“猪周期”现象,尝试使用集成经验模态分解(EEMD) 方法挖掘出 “猪周期”的价格波动机制,并引入遗传算法(GA)改进支持向量机。研究结果发现,通过 EEMD 方法能较好地展示出“猪周期”的循环轨迹;通过对比常用的预测模型,发现基于 EEMD 的 GASVM 模型预测精测更高,是一种更具有科学性的价格预测工具。
英文摘要:
      In view of the "hog cycle" phenomenon that frequently occurs in recent years, "high-price and highrisk-to-kill farmers", this paper attempts to use the integrated empirical modality method EEMD method to excavate the "hog cycle" of pork price fluctuations as a predictive length criterion, and introduces The genetic algorithm (GA) is used to optimize the performance parameters such as the penalty parameter C, kernel function g, and loss function p of the support vector machine (SVM) to further optimize the prediction performance of the SVM. The results showed that: Digging through the EEMD method can accurately dig out the "hog cycle" of pork prices; through the comparison of commonly used prediction models, the optimization performance of the support vector machine after optimization by the genetic algorithm is optimal and robust enough. Sex, and more suitable for short "porcine cycle" predictions. The GA-SVM model proposed in this paper helps to guard against the cyclical risks of pork price volatility and is a more scientific price forecasting tool.
  查看/发表评论  下载PDF阅读器

手机扫一扫看