文章信息
基金项目
- 广东省重点领域研发计划项目(2020B0202090003,2018B020206002);广东省基础与应用基础研究基金(2019A1515011903);广东省农业科学院科技创新战略专项资金(高水平农科院建设)- 人才项目(R2018YJ-YB1001);广东省农业科学院农业优势产业学科团队建设项目(202101TD)
作者简介
- 闫晓霞(1996—),女,在读硕士生,研究方向为水稻分子育种,E-mail:2267855237@qq.com.
通讯作者
- 刘迪林(1981—),男,博士,副研究员,研究方向为水稻分子育种,E-mail:dilin_liu@163.com.
文章历史
- 收稿日期:2021-09-03
2. 广东海洋大学滨海农业学院,广东 湛江 524088
2. College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
随着人口增长及资源约束,保证充足的粮食生产成为人类的巨大挑战[1]。水稻是全球约50% 人口的主粮,在保障人类粮食安全方面发挥着核心作用。目前水稻生产大多采用移栽方式,费力费工、生产效率低、资源利用率低,在劳动力短缺、耕地和水资源紧张的背景下,水稻育秧移栽的传统方式面临严峻考验[2]。而水稻直播直接将水稻种子播到大田,无需育秧和移栽,与移栽相比省工、省力、省秧田,而且可以达到与移栽水稻相当的产量,经济效益良好,近年来在广东、江苏、浙江、湖南、湖北、江西等省份迅速推广,正在成为我国水稻生产的重要方式之一[2-3]。
根据播种时大田水分状况,水稻直播可分为旱直播、湿直播和水直播[4],直播水稻生产中普遍面临“全苗难、草害重、易倒伏”三大突出问题。全苗难是导致直播稻产量不高不稳的首要因素,能否全苗直接影响群体的起点苗数,进而影响群体质量和最终产量。其次,杂草是直播生产的主要生物制约因素,可造成减产30%~80%,直播稻的成功很大程度上取决于有效的杂草管理[5]。稻田的杂草种类繁多,水稻和杂草的生长期重叠,容易发生“草欺苗”的现象。此外,易倒伏也是直播稻生产的突出问题。由于水稻种子直接播种在稻田表面,根系下扎不深,直播稻的用种量大,到中后期水稻群体较大造成通风透光性差,且水稻植株间争夺养分,最终水稻基部节间较长,后期易倒伏,既妨碍收割,又降低产量和品质[6-8]。
针对上述三大问题,在出苗、防草和抗倒伏三方面对直播专用稻的品种特性提出更高要求。一个理想的直播稻品种,需要“易出苗、能防草、抗倒伏”,既要具备很强的逆境发芽成苗能力,如耐淹水萌发、耐低温发芽和顶土出苗能力等,又要在苗期具有早生快发、抑制杂草生长或抗除草剂的特性,同时还要有较强的抗倒伏性,这三大特性构成了水稻直播适应性的核心性状。要加快直播稻品种的培育,必须加强对水稻直播适应性的遗传基础解析,充分利用水稻资源库中存在的丰富自然变异和现代基因组技术,通过基因定位、全基因组关联分析和图位克隆等方法,挖掘优异等位基因,为直播稻品种的精准培育提供充足的基因资源。通过分子育种和常规育种技术相结合,实现多基因的快速高效聚合,培育新型的高产、优质、多抗直播专用品种[9-10]。
本文围绕直播稻“出苗、防草、抗倒”三大方面,对水稻直播适应性的遗传基础进行梳理,重点阐述控制直播适应性的关键基因及育种进展,并探讨了直播专用稻的培育策略,以期为直播品种培育和直播稻生产的健康发展提供参考。
1 直播出苗的遗传基础受环境温度、淹水和田地平整度等因素限制,直播稻出苗面临多重环境胁迫,如低氧、低温和土壤压迫等。选育具备低氧萌发、低温萌发和顶土出苗特性的水稻品种,对于直播稻正常全苗至关重要[9-13]。
1.1 低氧萌发性水稻低氧萌发性是指种子在淹水等低氧条件下正常萌发和生长的能力。为了在低氧条件下萌发成苗,水稻进化出“代谢适应”和“逃逸”等策略,包含信号传导、生理变化和形态适应三层响应[13-15]。与其他大田作物不同,水稻是半水生沼泽植物,部分水稻种质的胚芽鞘在淹水环境下快速伸长,到达水面后将氧气输送到种子,形成有叶和根的幼苗[15-16]。
对大量水稻种质资源的筛选表明,多数水稻品种在淹水条件下发芽成苗能力弱,低氧萌发性好的种质占比一般在2% 以内[15, 17-22]。例如,陈振挺采用250份中国水稻微核心种质模拟直播淹水条件,发现成苗率达70% 以上的品种只有4份,仅占1.6%[18]。Angaji等[21]对8 114份水稻材料进行淹水试验,发现成苗率超过70% 的仅19份,占0.23%,多数是地方品种,最具代表性的是源自缅甸的Khao Hlan On(KHO)和源自中国的Ma-Zhan Red(MZR)。
通过基因定位,已鉴定到大量控制低氧萌发性的QTL[11-12, 21, 23-28]。Baltazar等[11]利用IR64和地方品种Kharsu 80A的F2:3群体,检测到4个QTL(qAG7.1、qAG7.2、qAG7.3和qAG3),解释表型变异的8.1%~12.6%。Angaji等[21]利用IR64/KHO的分离群体鉴定到5个控制水稻淹水成苗的QTL,解释表型变异的17.9%~33.5%,其中表型贡献最大的是AG1(qAG9-2)。Baltazar等[23]利用IR64/Nanhi的F2:3群体,定位到3个QTL,其中qAG7贡献率达22.3%。Ghosal等[24]报道了控制低氧胁迫下存活率的主效位点qSUR7-1,贡献率超过30%。Septiningsih等[26]鉴定到来自Ma-Zhan Red的主效QTL AG2(qAG7.1),其中qAG7.1、qSUR7-1和qAG7位于染色体相近区域,可能由同一基因控制。在不同群体被反复检测到的主效位点AG1(qAG9-2)和AG2(qAG7.1),是培育直播稻专用品种的重要基因资源,二者已用于分子育种[20]。
近年来,全基因组关联分析在水稻低氧萌发性的遗传解析方面发挥了较大作用。结合关联分析和连锁分析,Hsu等[25]鉴定到一个效应值高达27% 的淹水萌发主效QTL,与IR64/KHO群体中的qAG1-2重叠,增效等位基因来自日本晴,区间内包含己糖激酶基因HXK6。Zhang等[29]利用432份籼稻进行的全基因组关联分析,结合胚芽鞘表达谱数据,发现1个编码DUF结构域蛋白的基因,与萌发期耐淹性高度相关,且该基因受缺氧诱导。Nghi等[30]在273份粳稻的关联分析中,找到11个可能调控胚芽鞘长度的显著关联位点。Su等[31]通过关联分析,检测到26个淹水萌发性相关的SNP位点,并预测了4个候选基因。
采用关联分析、图位克隆和反向遗传学等策略,已功能验证了一些低氧萌发基因,增进了对淹水萌发调控机制的理解[27, 32-36]。Kretzschmar等[27]采用图位克隆策略,从缅甸地方品种KHO中克隆到海藻糖6- 磷酸磷酸酯酶基因OsTPP7;OsTPP7将海藻糖-6- 磷酸(T6P)转化为海藻糖,作为能量传感器的核心,根据局部组织蔗糖的多少来确定合成或分解,激活胚芽鞘中Amy3的表达,增强种子萌发过程淀粉动员、促进胚芽鞘生长,提高种子厌氧萌发能力。OsTPP7在国际水稻研究所(IRRI)30% 以上的衍生品种中缺失,但是存在于多数粳稻品种中,但在273份粳稻群体中并未发现OsTPP7基因的SNP多态性和转录变异与淹水下的胚芽鞘长度变异存在关联[30]。Ye等[32]发现OsCBL10基因的启动子变异与淹水萌发性显著关联,OsCBL10启动子可分为耐淹型(T型)和不耐淹型(I型),OsCBL10在耐淹型品种中低水平表达,而其高表达降低了淹水萌发性,因此OsCBL10是低氧信号通路的负调节因子。Zhang等[33]、Ma等[34]利用反向遗传学策略,鉴定到2个淹水发芽的负调控因子OsEBP89和OsFLZ18。其中,乙烯响应因子OsEBP89是AP2/ERF亚家族成员,该基因受淹水胁迫诱导,敲除后可提高淹水发芽率,OsEBP89蛋白可与SnRK1α蛋白相互作用并被其磷酸化[33];类似地,Ma等[34]对水稻中的类FCS锌指蛋白进行了全基因组鉴定,发现8个OsFLZ蛋白与SnRK1A相互作用,其中OsFLZ18与SnRK1A相互作用并抑制SnRK1A转录激活活性,从而调节其靶基因Amy3的表达,OsFLZ18的过表达株系在淹水后幼苗生长延迟、胚芽鞘缩短。有证据表明,表观遗传途径也参与水稻缺氧萌发的调控。Castano-duque等[35]通过对2 700份(雨季)和1 500份(旱季) 水稻材料进行缺氧发芽率的关联分析,发现甲基化途径相关基因CLSY1参与缺氧萌发。此外,结合基因定位、关联分析、差异表达分析及序列变异信息等,预测了一批淹水发芽相关的候选基因,这些基因涵盖转录因子、酶类、热激蛋白和表达蛋白等[17, 37-40]。
1.2 低温萌发力低温是限制直播稻成苗的主要因素之一。在我国华南和长江中下游双季稻区,春季直播往往会遭遇“倒春寒”引起的低温冷害,影响种子萌发和正常生长,严重威胁早稻直播生产的安全性,这就要求直播品种具有较高的低温萌发力。Fujino等[41]利用多种分离群体,已鉴定到数十个控制低温发芽力的QTL,其中qLTG3-1是为数不多已克隆的低温萌发基因,该基因来自温带粳稻品种Italica Livorno,能显著增强低温发芽势,只有1个外显子,编码蛋白全长184个氨基酸,含有GRP结构域和LTP结构域;qLTG3-1基因的表达不受低温诱导,在种子萌发过程中,其在糊粉层和覆盖胚芽鞘的上胚层表达,可能调控这些组织的细胞液泡化,引起这些组织的松弛而提高低温下的发芽势。OsSAP16是首个利用全基因组关联分析(GWAS)鉴定到的低温萌发基因,编码1个锌指结构域蛋白,其表达水平和低温萌发力显著正相关[42]。Wang等[43]在丽江新团黑谷/ 沈农265的重组自交系群体中发现两个低温萌发力QTL,分别对应上述的qLTG3-1和OsSAP16,测序证实丽江新团黑谷同时含有qLTG3-1和OsSAP16,因此,丽江新团黑谷是用于低温萌发力改良的优异供体。Li等[44]鉴定到3个低温萌发力QTL,其中qLTG-9精细定位在9号染色体72.3 kb的区间内。Shim等[45]利用粳稻和普通野生稻构建的种间分离群体,鉴定到源自普通野生稻的低温发芽主效位点qLTG1。杨梯丰等[46]结合GWAS和单片段代换系,在10号染色体上精细定位到1个全新的低温萌发QTL,并鉴定了候选基因。Yang等[47]在另一项GWAS研究采用200份籼稻资源,结合关联分析和转录组测序,最终鉴定到低温萌发相关的3个差异表达基因。
1.3 顶土出苗能力胚轴的伸长是种子萌发后顶土出苗的动力,中胚轴的伸长与禾本科植物出苗直接相关。旱直播条件下,顶土出苗能力对于直播成苗十分关键,具有优良的中胚轴伸长能力的种质在顶土出苗速率和整齐度方面均表现突出[48]。目前,利用不同的群体和方法,定位了控制中胚轴伸长的大量QTL,并已成功克隆3个控制水稻中胚轴伸长的基因[48-53]。Lyu等[51]敲除植物多胺氧化酶基因OsPAO5后,发现中胚轴伸长、出苗更快、产量提高,可以用于直播稻品系的创制,OsPAO5启动子区的SNP自然变异影响其表达水平,在中胚轴驯化中受到选择。Xiong等[52]通过对1个高腰儿突变体gaoyao1(gy1)的遗传分析,图位克隆了调控中胚轴和胚芽鞘伸长的基因GY1及其优异等位变异GY1376T,其中GY1编码1个叶绿体定位的磷脂酶A1蛋白,通过促进茉莉酸的合成从而抑制中胚轴和胚芽鞘的伸长。乙烯信号通路通过抑制GY1及其他茉莉酸合成途径基因的表达来下调茉莉酸的含量,促进细胞伸长,进而调控水稻中胚轴和胚芽鞘长度;优异等位变异GY1376T的存在与长中胚轴密切相关,可用于培育新型旱直播水稻品种。Sun等[53]通过水稻中胚轴长度的GWAS分析,证明油菜素甾醇(Brassinosteroids,BRs)信号通路的关键组分OsGSK2调控中胚轴长度,其编码区的等位变异决定了水稻中胚轴长度的自然变异和从野生稻到栽培稻的驯化,这一过程受BRs和独脚金内酯的共同调控。以上功能基因都具有优异的自然等位变异,为通过改良水稻中胚轴伸长从而促进水稻直播品种的培育提供了基因资源。
2 直播稻防草的遗传基础草害是影响水稻高产、稳产、优质生产的重要制约因素之一[5]。随着直播稻生产面积的扩大,稻田草害的问题日益突出。我国稻田杂草常见的有40多种,如稗草、千金子、异型莎草、节节草、鸭舌草和水苋菜等[54]。由于稻田杂草的侵害,水稻的产量损失可达40% 以上。作为田间除草的有效方法之一,除草剂具有高效、经济、省力的优点。但喷施除草剂可能对水稻带来危害,培育具有除草剂抗性的水稻品种成为防治直播稻田杂草危害的关键[55]。此外,利用水稻苗期快速生长和抑制杂草生长的特性来增强水稻对杂草的直接竞争能力,也是防止“草欺苗”现象的有效途经。
2.1 除草剂抗性基因目前,通过诱变筛选策略已获得一些水稻抗除草剂突变体,主要涉及乙酰乳酸合成酶ALS、5-烯醇丙酮酸莽草酸-3- 磷酸酯合成酶EPSPS、乙酰辅酶A羧化酶ACCase及对羟苯基丙酮酸双氧化酶HPPD等除草剂靶标位点[54]。例如,贵州大学通过EMS诱变获得抗草甘膦突变体osgr-1,是OsEPSPS酶3个氨基酸突变导致[56];抗咪唑啉酮类除草剂突变体,是乙酰乳酸合成酶OsALS基因突变所致[57]。从资源材料中也筛选到自然突变体,例如抗咪唑啉酮类除草剂材料金粳818,其ALS基因编码区1 880位碱基G转换为A,该突变与抗除草剂红米strawhullR突变位点相同,并设计了用于分子育种的功能标记,ALS基因抗除草剂位点包括至少9种氨基酸变异,不同位点突变决定了咪唑啉酮类除草剂抗性水平的差异[58-59]。其中,在ALS基因上新发现的W548M突变,对所有ALS类除草剂都具有抗性,且对咪唑啉酮类除草剂的抗性水平比传统的S627N突变体提高了10倍[59]。毕俊国等[60]从30 570份水稻种质资源中筛选到1份抗咪唑啉酮类除草剂的新种质(编号R16-4),其突变位点也是ALS基因编码区1 880位的G/A突变,R16-4为偏籼型的水稻导入系,抗性表现为显性遗传。
最近,日本科学家鉴定到HIS1(Hpdd Inhibitor Sensitive 1)基因,编码1个Fe(Ⅱ)/2- 氧戊二酸依赖性加氧酶,可以催化羟基化反应使β- 三酮类除草剂失去毒性,对双环磺草酮(bTH benzobicyclon, BBC)及其他4种β- 三酮类除草剂具有广谱抗性[61],该基因第4个外显子28 bp缺失导致对除草剂敏感,而该基因第1、5外显子插入逆转座子Tos17可以介导BBC抗性[62]。绝大部分粳稻中含有功能性的HIS1等位基因,对双环磺草酮表现抗性;相反,很多籼稻对双环磺草酮敏感。籼稻中发现两种功能丧失型等位变异:一类是上述的28 bp缺失,另一类是1 510位的T/G突变,且后者发生频率远高于前者[63]。
2.2 杂草竞争性由于除草剂的环境残留问题,杂草防除的另一个方向是增强水稻对杂草的直接竞争能力。培育早生快发、早期生长旺盛的水稻,可以有效遏制杂草。此外,化感水稻品种可以通过向环境分泌化感物质抑制杂草生长,一般可以减少杂草32%~60%。来自美国的PI321777是1个强化感材料,其中的苯丙氨酸解氨酶OsPAL2;3启动子活性高是调控其化感抑草能力的原因之一,该基因可作为提高化感抑草潜力的候选基因[64]。从我国的稻种资源中,也挖掘出蚁公包(台湾品种)和地谷(云南品种)两份地方资源,对无芒稗的控制效果均显著好于PI312777[65]。目前,国内已有化感水稻品种培育的报道,例如华南农业大学培育的化57S和化两优78等[66]。
3 直播稻抗倒伏的遗传基础抗倒伏性是直播稻品种的理想性状之一,它有助于提高水稻产量和品质,提高机收效率[62]。20世纪50年代末,半矮秆基因sd1被成功应用于水稻育种,在提高水稻产量和解决水稻倒伏问题等方面发挥了关键作用,但是sd1基因也降低了氮肥利用效率和生物量,使得水稻进一步增产的难度加大。近年来,随着水稻直播栽培的推广,水稻倒伏现象日益严重。影响倒伏的主要因素有水稻株型、根系生长、茎秆结构和细胞壁化学成分[67]。已经鉴定到多个抗倒伏性相关的QTL,包括prl5、BSU11、SCM2、SCM3等[68-76]。其中,抗倒伏座位prl5来自籼稻品种Kasalath,具有增强茎秆抗推力的作用,它通过延缓叶片衰老和增加茎秆的碳水化合物积累,增强基部茎秆的机械强度,从而提高抗倒伏性,但不影响水稻产量和株高[68-69]。另一个抗茎弯曲的位点BSUC11,主要影响总纤维素含量,在水稻成熟后防止上部茎秆的支撑力下降。利用图位克隆法,克隆了APO1基因(即SCM2),既调控穗部结构、增加穗数,又增强茎秆强度和厚度[72]。SCM3对应的基因被鉴定为OsTB1/FC1,该基因作用于独角金内酯下游,抑制水稻侧芽伸出,负调控水稻分蘖数[74]。Yadav等[75]报道了两个主效QTL位点qSC1.1和qCS1.1,它们分别控制茎粗和茎秆强度。Jiang等报道了位于2号染色体的1个稳定表达QTL[76],候选基因可能涉及细胞分裂素信号、细胞周期信号和NAC转录因子信号等生物过程。控制茎粗和茎秆厚度的位点qCd6和qCt6,与SCM2/APO1及qBs2(抗弯曲胁迫)重叠,位于SCM4附近[77]。通过关联分析,在bc3和SCM3同一位置鉴定到控制茎粗的QTL[78]。此外,水稻直播中的根倒伏现象严重,亟需加强水稻根系性状研究。Uga等[79]克隆了1个控制根生长角度的数量性状位点DRO1,该基因的高表达可以增加根向下弯曲的角度,改变根系形态、增加扎根深度。
4 直播稻育种进展水稻直播适应性是以“出苗、防草、抗倒”为主体、包含多性状的综合性状体系,其中的核心性状包括低氧萌发性、低温发芽力、顶土出苗力、除草剂抗性、早生快发性以及抗倒伏性等。除了除草剂耐受性以外,直播适应性涉及的其他性状都是多基因控制的复杂性状,单一性状的改良可能需要对多个基因或QTL进行聚合。由于复杂数量性状之间可能存在相互作用,多个QTL或基因的导入和聚合效应可能出现协同或拮抗等作用。因此,在前育种环节对QTL的聚合效应和育种价值进行评估极为必要[80-82]。
4.1 直播稻品种选育在美国、澳大利亚、韩国和欧洲等地,直播稻占比高,品种选育重点考虑了直播适应性[83-84]。澳大利亚水稻种植面积约15万hm2,大约90% 的水稻采用飞机播种,其主要品种有Amaroo、Langi和Koshikari,每公顷用种量约120 kg[83]。在韩国,最初用于直播栽培的品种均从移栽品种中筛选,主要注重早熟、低温发芽和抗倒伏等特性,20世纪90年代开始,韩国设立了直播品种选育专项,已培育出农安、水原420、水原423、益山421、密阳150等一系列品种用于直播稻生产[84]。
在我国,现有的直播稻品种基本上从移栽稻品种中筛选[85]。通过筛选适宜直播条件的优质水稻品种,可以充分挖掘和利用现有水稻品种,如彭碧琳等[86]针对华南双季稻区筛选出适宜早晚两季直播种植的品种五优308。此外,直播生产中用得较多的有龙粳21、龙粳31、黄华占等。就直播稻品种要求的逆境发芽出苗(低温发芽、低氧发芽、顶土出苗)、杂草竞争性(耐除草剂、早生快发)、抗倒伏(少蘖重穗、深根秆壮)等特性而言,还很难找到完全符合要求的直播稻品种。王楚桃等[87]用自育保持系Q2B与广东优质抗稻瘟病材料余航丝苗杂交,回交转育成三系不育系神9A,具有耐低温淹水发芽特性。王宝祥等[88]选育出适合黄淮地区轻简栽培(机插、直播)的水稻新品种连粳15号,具有早熟、优质、抗倒伏、抗病等特点,并总结出黄淮稻区直播稻育种主要目标:早熟大穗、中胚轴长、抗逆、偏感光型早熟、抗倒、抗除草剂。
配套使用除草剂和抗除草剂水稻品种是一种高效的直播除草手段。水稻的除草剂耐受系统Clearfield是一种非转基因耐除草剂水稻生产技术,对咪唑啉酮具有耐受性,已在美国通过诱变育种引入并应用多年[89-90]。唐晓艳团队利用EMS诱变技术,对生产上大面积推广的优质稻品种“黄华占”进行诱变,成功创制了抗咪唑啉酮的“洁田稻001”,并通过安徽省审定,在直播生产中展现出良好的应用潜力[55]。天津市水稻研究所培育了抗咪唑啉酮类除草剂的常规水稻品种金粳818、津稻372和金粳518等,其中金粳818是首个国审非转基因抗除草剂粳稻品种,这些抗除草剂品种的培育和应用,有望在直播稻育种和生产中发挥巨大作用(https://www.ricedata.cn/variety/varis/614995.htm)。
4.2 直播稻分子育种在直播稻分子育种方面,当前广泛应用的策略是分子标记辅助回交育种。利用分子标记跟踪目标基因,将控制目标性状的QTL或基因从供体亲本向高产主栽品种转移,并保持轮回亲本的主要遗传特性。水稻淹水萌发性的主效位点AG1(即qAG-9-2,OsTPP7)和AG2,在分子育种中研究较多[80-81, 91-93]。国际水稻研究所通过杂交和连续回交,在IR64背景中导入AG1位点,培育了近等基因系IR64-AG1,试验证明AG1的导入在不同背景中均提高了萌发耐淹性,对产量无负面影响[91]。通过比较AG1和AG2在高产品种Ciherang中的效应,发现二者显著提高萌发耐淹性,导入系在淹水条件下的增产幅度达2.8 t/hm2,且AG1和AG2的导入在正常和淹水条件下,对出苗、生长发育和产量都没有不良影响[80]。对AG1与其他重要基因的聚合效应也进行了评估[81],例如AG1和耐淹基因Sub1的聚合对淹水萌发和苗期耐淹性没有负面影响,但在长时间(16 d)淹水条件下Sub1和AG1相互作用会降低成苗率[92];AG1和磷高效基因Pup1则能高效协同,二者聚合后既提高淹水萌发性,又促进了磷素的高效吸收,AG1和Pup1聚合系通过增加分蘖、提高磷素吸收以及低氧条件的萌发,展现出强劲的早期活力,AG1和Pup1聚合是直播稻品种培育的可行策略[81]。韩国的Kim等[93]以KHO为供体和粳稻品种Dongan杂交、回交,结合分子标记辅助选择,培育了4个聚合AG1和AG2的新品系,显著提高了淹水萌发能力,在低氧条件下的成苗率比轮回亲本提高了33%~115%。在抗倒伏分子育种方面,Yano等[74]聚合了抗倒伏基因SCM2和SCM3,发现聚合系比只含有SCM2或SCM3的品系具有更高的茎秆强度和抗倒伏性。Kashiwagi等[94]在日本晴背景中聚合了来自籼稻的4个茎粗QTL,多基因聚合系的抗推力比对照品种增强约40%,且基部节间的机械强度更大。在低温发芽力方面,杨梯丰等[46]开发了基因内分子标记Gltg3-1,可以在杂交后代中准确选择低温发芽基因qLTG3-1。
近年来,利用基因编辑技术创制抗除草剂水稻种质进展较快,在直播防草中具有广阔应用前景。高彩霞团队和朱健康团队分别对EPSPS基因进行编辑,均获得了抗草甘膦的水稻品种[95-96]。多个团队在日本晴、南粳9108、中花11、南粳46等不同背景中对ALS基因进行编辑并获得成功,对咪唑乙烟酸和双草醚表现出抗性[97-99]。此外,转基因技术的应用也加速了除草剂水稻的培育。Liberty Link和Roundup Ready是对草铵膦和草甘膦具有抗性的转基因技术,采用具有草铵膦抗性的双丙氨磷抗性(BAR)基因,通过基因工程手段选育了抗草铵膦水稻品种Gulfmont和Koshihi kari[100]。国内多家单位将BAR基因导入水稻,获得抗草铵膦的水稻品系;将抗草甘膦基因EPSPS导入水稻,获得耐受农达除草剂的水稻品系[101]。
在国际水稻研究所(IRRI),通过传统杂交育种和基因组辅助育种,将来自多个供体亲本的多个优异性状进行聚合,包括耐低氧萌发性、早期活力、快速和整齐出苗特性、高根密度、营养高效吸收等相关QTL,培育的苗头品系最多聚合了11个QTL,且在直播条件下增产极显著[62, 82]。
5 直播专用稻培育策略作为古老而又重新焕发活力的生产技术,直播稻生产模式具有节省劳力、节约资源、降低生产成本的优势,推广面积在不断扩大。针对水稻直播生产中普遍存在的“全苗难、草害重、易倒伏”三大突出问题,需要从品种和栽培调控技术等方面协同解决,而培育“易出苗、能防草、抗倒伏”的直播品种,将极大缓解对直播栽培技术的压力,降低直播稻生产的风险,是促进直播水稻生产可持续发展的根本保障。尽管从移栽品种中已筛选出一些比较适合直播的品种并用于生产,但这类筛选也存在局限性,直播适应性的一些关键等位变异,可能在现代育种过程中丢失,从现代栽培品种筛选出来的品种只是相对表现好些,与直播专用稻品种还有较大差距。此外,合理的分蘖动态是水稻高产群体形成的重要物质基础,由于直播水稻无缓苗过程,群体分蘖强且快,通常容易形成较大群体,导致穗数多而穗粒数减少。针对此问题,要着重筛选分蘖力中等、穗大、分蘖成穗率高的品种,在直播条件下适当控制分蘖数量,同时在生产上“控群体、壮茎秆、促大穗”,在足量的有效穗数下,增加穗肥占比,实现有效穗数和每穗粒数的充分互补[102]。
当前,直播稻品种培育仍然面临一些制约。例如,优异供体资源缺乏、优良基因不多、分子标记体系不健全、缺乏有效的多性状聚合策略等,也存在功能基因研究和育种应用脱节的问题。需要水稻遗传资源学、功能基因组学、分子育种和传统育种领域引起重视,上下游紧密合作解决这些问题。
基于研究现状,我们初步提出直播专用稻的培育策略。首先,加强对优异稻种资源的筛选和利用。前期已有一些代表性种质被筛选出来,这些表现优异的特色种质,应该在尊重知识产权的基础上,实现广泛共享利用,同时继续加大对种质资源宝库的筛选力度,选出符合育种目标的特异种质资源。由于长期以来的水稻育种工作主要针对移栽品种,当前应用的大部分品种并不具备直播适应性,某些直播特性已经在长期的人工选择中丢失。为此,要特别重视从古老的地方种乃至野生稻资源中,把丢失的性状和基因找回来。其次,对直播适应性的遗传解析是改良水稻直播适应性的重要基础,通过对耐淹水萌发、耐低温萌发、顶土出苗、抗除草剂和抗倒伏等特性的筛选和基因挖掘,可为育种家提供更多的遗传改良靶标。截至目前,已经克隆和功能验证的基因不多,而其中好用的基因更是十分稀少。无论是出苗特性,还是在防草或抗倒伏方面,都需要继续挖掘更多好用的优异等位变异,为直播稻品种提供充足的物质基础,否则直播稻品种的分子育种将面临“巧妇难为无米之炊”的尴尬境地。再次,需要发展高效的多基因聚合策略。除了除草剂抗性,其他直播特性几乎都是多基因控制的复杂性状,采用传统的回交转育结合表型鉴定的育种方式,很难将控制性状的多个基因都导入到目标材料中。在单性状突破的基础上,逐步对多性状进行聚合,在品种培育上更为稳妥。
当前,水稻全基因组测序、大量控制水稻各种性状的基因或QTL定位和克隆、分子标记辅助选择育种、全基因组选择、转基因(基因编辑)和分子设计育种等新技术的开发,为今后水稻高效精准遗传改良和新品种选育提供了重要技术支撑[103],随着分子标记技术的发展,尤其是高密度SNP芯片的研发,通过开发出与控制水稻直播适应性的基因位点紧密连锁的分子标记,以及全基因组高密度分子标记,可以进行快速的前景选择和背景选择,从而将相关主效基因导入目标材料,并最大限度减少连锁累赘效应,育成具有直播适应性的新材料和新品种,解决目前水稻直播轻简化栽培面临的品种短缺问题,促进直播水稻生产的健康可持续发展。随着新的基因资源发掘和育种技术进步,直播专用稻品种的选育将步入快车道,并扭转当前直播稻品种选育相对滞后的局面。
[1] |
HICKEY L T, HAFEEZ A N, ROBINSON H, JACKSON S A, LEAL-BERTIOLI S C M, TESTER M, GAO C X, GODWIN I D, HAYES B J, WULFF B B H. Breeding crops to feed 10 billion[J]. Nature Biotechnology, 2019, 37(7): 744-754. DOI:10.1038/s41587-019-0152-9 |
[2] |
马雅美, 张少红, 赵均良. 赵均良水稻直播相关性状遗传分析及分子机制研究进展[J]. 广东农业科学, 2021, 48(10): 13-22. DOI:10.16768/j.issn.1004-874X.2021.10.002 MA Y M, ZHANG S H, ZHAO J L. Research progress in genetic analysis and molecular mechanisms of rice direct-seeding related traits[J]. Guangdong Agricultural Sciences, 2021, 48(10): 13-22. DOI:10.16768/j.issn.1004-874X.2021.10.002 |
[3] |
高明国. 水稻直播技术推广的影响因素分析——以河南、湖南、湖北6县(市)为例[J]. 广东农业科学, 2012, 39(23): 7-10. DOI:10.3969/j.issn.1004-874X.2012.23.003 GAO M G. Analysis of the influencing factors of the promotion of rice direct seeding technology-taking 6 counties(cities)in Henan, Hunan and Hubei as examples[J]. Guangdong Agricultural Sciences, 2012, 39(23): 7-10. DOI:10.3969/j.issn.1004-874X.2012.23.003 |
[4] |
FAROOQ M, SIDDIQUE K H M, REHMAN H, AZIZ T, LEE D J, WAHID A. Rice direct seeding: Experiences, challenges and opportunities[J]. Soil and Tillage Research, 2011, 111(2): 87-98. DOI:10.1016/j.still.2010.10.008 |
[5] |
PHUKAN J, KALITA S, BORA P. Weed management in direct seeded rice: A review[J]. Journal of Pharmacognosy and Phytochemistry, 2021, 10(2): 742-748. DOI:10.18805/ag.v0iOF.7307 |
[6] |
KAUR K, KAUR P, KAUR T. Problems faced by farmers in cultivation of direct seeded rice in Indian Punjab[J]. Agricultural Research Journal, 2017, 54(3). DOI:10.5958/2395-146x.2017.00081.3 |
[7] |
YADAV S, SINGH U M, NAIK S M, VENKATESHWARLU C, RAMAYYA P J, RAMAN K A, SANDHU N, KUMAR A. Molecular mapping of QTLs associated with lodging resistance in dry direct-seeded rice(Oryza sativa L.)[J]. Frontiers in Plant Science, 2017, 8: 1431-1431. DOI:10.3389/fpls.2017.01431 |
[8] |
崔金登. 直播稻生产中存在的问题及其对策探讨[J]. 南方农业, 2018, 12(26): 5-6. DOI:10.19415/j.cnki.1673-890x.2018.26.003 CUI J D. Discussion on the problems existing in direct-seeding rice production and their countermeasures[J]. Southern Agriculture, 2018, 12(26): 5-6. DOI:10.19415/j.cnki.1673-890x.2018.26.003 |
[9] |
YADAV S, SANDHU N, DIXIT S, SINGH V K, CATOLOS M, MAZUMDER R R, RAHMAN M A, KUMAR A. Genomics-assisted breeding for successful development of multiple-stress-tolerant, climate-smart rice for southern and southeastern Asia[J]. Plant Genome, 2021, 14(1): e20074. DOI:10.1002/tpg2.20074 |
[10] |
杨志涛, 李媛, 张少红. 377份多样性国际稻种低温发芽力评价[J]. 广东农业科学, 2017, 44(4): 1-6. DOI:10.16768/j.issn.1004-874X.2017.04.001 YANG Z T, LI Y, ZHANG S H. Evaluation of low temperature germination ability of 377 diverse international rice varieties[J]. Guangdong Agricultural Sciences, 2017, 44(4): 1-6. DOI:10.16768/j.issn.1004-874X.2017.04.001 |
[11] |
BALTAZAR M, IGNACIO J C, THOMSON M, ISMAIL A, MENDIORO M, SEPTININGSIH E. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A[J]. Breeding Science, 2019, 69. DOI:10.1270/jsbbs.18159 |
[12] |
JEONG J M, CHO Y C, JEONG J U, MO Y J, KIM C S, KIM W J, BAEK M K, KIM S M. QTL mapping and effect confirmation for anaerobic germination tolerance derived from the japonica weedy rice landrace PBR[J]. Plant Breeding, 2020, 139(1): 83-92. DOI:10.1111/pbr.12753 |
[13] |
KUMAR A, NAYAK A K, HANJAGI P S, KUMARI K, S V, MOHANTY S, TRIPATHI R, PANNEERSELVAM P. Submergence stress in rice: Adaptive mechanisms, coping strategies and future research needs[J]. Environmental and Experimental Botany, 2021, 186: 104448. DOI:10.1016/j.envexpbot.2021.104448 |
[14] |
ISMAIL A M, ELLA E S, VERGARA G V, MACKILL D J. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice(Oryza sativa)[J]. Annals of Botany, 2009, 103(2): 197-209. DOI:10.1093/aob/mcn211 |
[15] |
YU S M, LEE H T, LO S F, HO T D. How does rice cope with too little oxygen during its early life?[J]. New Phytologist, 2021, 229(1): 36-41. DOI:10.1111/nph.16395 |
[16] |
LIU J, HASANUZZAMAN M, SUN H, ZHANG J, PENG T, SUN H, XIN Z, ZHAO Q. Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia[J]. Environmental and Experimental Botany, 2020, 169: 103916. DOI:10.1016/j.envexpbot.2019.103916 |
[17] |
MA M, CEN W, LI R, WANG S, LUO J. The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low O2 stress[J]. Plants, 2020, 9(10): 1363. DOI:10.3390/plants9101363 |
[18] |
陈振挺, 冯芳君, 严明, 范佩清, 马孝松, 吴金红, 梅捍卫. 水稻自然变异群体淹水发芽相关特性鉴定[J]. 上海农业学报, 2020, 36(5): 1-6. DOI:10.15955/j.issn1000-3924.2020.05.01 CHEN Z T, FENG F J, YAN M, FAN P Q, MA X S, WU J H, MEI H W. Identification of related characteristics of rice natural variation population flooded germination[J]. Shanghai Journal of Agriculture, 2020, 36(5): 1-6. DOI:10.15955/j.issn1000-3924.2020.05.01 |
[19] |
YAMAUCHI M, AGUILAR A M, VAUGHAN D A, SESHU D V. Rice (Oryza sativa L.)germplasm suitable for direct sowing under flooded soil surface[J]. Euphytica, 1993, 67(3): 177-184. DOI:10.1007/BF00040619 |
[20] |
MONDAL S, KHAN M I R, ENTILA F, DIXIT S, CRUZ P C, ALI M P, PITTENDRIGH B, SEPTININGSIH E M, ISMAIL A M. Responses of AG1 and AG2 QTL introgression lines and seed pre-treatment on growth and physiological processes during anaerobic germination of rice under flooding[J]. Scientific Reports, 2020, 10(1): 10214. DOI:10.1038/s41598-020-67240-x |
[21] |
ANGAJI S A, SEPTININGSIH E M, MACKILL D J, ISMAIL A M. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.)[J]. Euphytica, 2010, 172(2): 159-168. DOI:10.1007/s10681-009-0014-5 |
[22] |
王洋, 王盈盈, 洪德林. 太湖流域水稻种子活力和耐缺氧能力遗传变异研究[J]. 南京农业大学学报, 2009, 32(3): 1-7. DOI:10.7685/j.issn.1000-2030.2009.03.001 WANG Y, WANG Y Y, HONG D L. Genetic variation of seed vigor and tolerance to anoxia among rice(Oryza sativa L.)varieties in Taihu Lake region[J]. Journal of Nanjing Agricultural University, 2009, 32(3): 1-7. DOI:10.7685/j.issn.1000-2030.2009.03.001 |
[23] |
BALTAZAR M D, IGNACIO J C I, THOMSON M J, ISMAIL A M, MENDIORO M S, SEPTININGSIH E M. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping[J]. Euphytica, 2014, 197(2): 251-260. DOI:10.1007/s10681-014-1064-x |
[24] |
GHOSAL S, CASAL C, QUILLOY F A, SEPTININGSIH E M, MENDIORO M S, DIXIT S. Deciphering genetics underlying stable anaerobic germination in rice: Phenotyping, QTL identification, and interaction analysis[J]. Rice, 2019, 12(1): 1-15. DOI:10.1186/s12284-019-0305-y |
[25] |
HSU S K, TUNG C W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice[J]. Rice, 2015, 8(1): 38. DOI:10.1186/s12284-015-0072-3 |
[26] |
SEPTININGSIH E M, IGNACIO J C, SENDON P M, SANCHEZ D L, ISMAIL A M, MACKILL D J. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red[J]. Theoretical and Appllied Genetics, 2013, 126(5): 1357-1366. DOI:10.1007/s00122-013-2057-1 |
[27] |
KRETZSCHMAR T, PELAYO M A F, TRIJATMIKO K R, GABUNADA L F M, ALAM R, JIMENEZ R, MENDIORO M S, SLAMET-LOEDIN I H, SREENIVASULU N, BAILEY-SERRES J, ISMAIL A M, MACKILL D J, SEPTININGSIH E M. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice[J]. Nature Plants, 2015, 1(9): 15124. DOI:10.1038/nplants.2015.124 |
[28] |
TNANI H, CHEBOTAROV D, THAPA R, IGNACIO J C I, ISRAEL W K, QUILLOY F A, DIXIT S, SEPTININGSIH E M, KRETZSCHMAR T. Enriched-GWAS and transcriptome analysis to refine and characterize a major QTL for anaerobic germination tolerance in rice[J]. International Journal of Molecular Sciences, 2021, 22(9): 4445. DOI:10.3390/ijms22094445 |
[29] |
ZHANG M, LU Q, WU W, NIU X, WANG C, FENG Y, XU Q, WANG S, YUAN X, YU H, WANG Y, WEI X. Association mapping reveals novel genetic loci contributing to flooding tolerance during germination in Indica rice[J]. Frontiers in Plant Science, 2017, 8(678). DOI:10.3389/fpls.2017.00678 |
[30] |
NGHI KN, TONDELLI A, VALÈ G, TAGLIANI A, MARÈ C, PERATA P, PUCCIARIELLO C. Dissection of coleoptile elongation in japonica rice under submergence through integrated genome-wide association mapping and transcriptional analyses[J]. Plant, Cell Environment, 2019, 42(6): 1832-1846. DOI:10.1111/pce.13540 |
[31] |
SU L, YANG J, LI D, PENG Z, XIA A, YANG M, LUO L, HUANG C, WANG J, WANG H, CHEN Z, GUO T. Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice[J]. Rice, 2021, 14(1): 1. DOI:10.1186/s12284-020-00444-x |
[32] |
YE N H, WANG F Z, SHI L, CHEN M X, CAO Y Y, ZHU F Y, WU Y Z, XIE L J, LIU T Y, SU Z Z, XIAO S, ZHANG H, YANG J, GU H Y, HOU X X, HU Q J, YI H J, ZHU C X, ZHANG J, LIU Y G. Natural variation in the promoter of rice calcineurin B-like protein10(OsCBL10)affects flooding tolerance during seed germination among rice subspecies[J]. The Plant Journal, 2018, 94(4): 612-625. DOI:10.1111/tpj.13881 |
[33] |
ZHANG Y, LI J, CHEN S, MA X, WEI H, CHEN C, GAO N, ZOU Y, KONG D, LI T, LIU Z, YU S, LUO L. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice[J]. Molecular Genetics and Genomics, 2020, 295(4): 941-956. DOI:10.1007/s00438-020-01669-7 |
[34] |
MA Y, ZHAO J, FU H, YANG T, DONG J, YANG W, CHEN L, ZHOU L, WANG J, LIU B, ZHANG S, EDWARDS D. Genome-wide identification, expression and functional analysis reveal the involvement of FCS-Like Zinc finger gene family in submergence response in rice[J]. Rice, 2021, 14(1): 76. DOI:10.1186/s12284-021-00519-3 |
[35] |
CASTANO-DUQUE L, GHOSAL S, QUILLOY F A, MITCHELL-OLDS T, DIXIT S. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment[J]. Plant Physiology, 2021, 186(2): 1042-1059. DOI:10.1093/plphys/kiab100 |
[36] |
LEE K W, CHEN P W, LU C A, CHEN S, HO T H, YU S M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J]. Science Signaling, 2009, 2(91): ra61. DOI:10.1126/scisignal.2000333 |
[37] |
HSU S K, TUNG C W. RNA-Seq analysis of diverse rice genotypes to identify the genes controlling coleoptile growth during submerged germination[J]. Frontiers in Plant Science, 2017, 8(762). DOI:10.3389/fpls.2017.00762. |
[38] |
YANG J, SUN K, LI D, LUO L, LIU Y, HUANG M, YANG G, LIU H, WANG H, CHEN Z, GUO T. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq[J]. BMC Genomics, 2019, 20(1): 355. |
[39] |
ZHAO Y, ZHAO W, JIANG C, WANG X, XIONG H, TODOROVSKA EG, YIN Z, CHEN Y, WANG X, XIE J, PAN Y, RASHID MAR, ZHANG H, LI J, LI Z. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS[J]. Frontiers in Plant Science, 2018, 9: 332. DOI:10.3389/fpls.2018.00332 |
[40] |
GAO H, ZHANG C, HE H, LIU T, ZHANG B, LIN H, LI X, WEI Z, YUAN Q, WANG Q, YU C, SHANG L. Loci and alleles for submergence responses revealed by GWAS and transcriptional analysis in rice[J]. Molecular Breeding, 2020, 40(8): 75. DOI:10.1007/s11032-020-01160-6 |
[41] |
FUJINO K, SEKIGUCHI H, MATSUDA Y, SUGIMOTO K, ONO K, YANO M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12623-12628. DOI:10.1073/pnas.0805303105 |
[42] |
WANG X, ZOU B, SHAO Q, CUI Y, LU S, ZHANG Y, HUANG Q, HUANG J, HUA J. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany, 2018, 69(3): 413-421. DOI:10.1093/jxb/erx413 |
[43] |
JIANG S, YANG C, XU Q, WANG L, YANG X, SONG X, WANG J, ZHANG X, LI B, LI H, LI Z, LI W. Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice[J]. International Journal of Molecular Sciences, 2020, 21(4): 1284. DOI:10.3390/ijms21041284 |
[44] |
LI L, LIU X, XIE K, WANG Y, LIU F, LIN Q, WANG W, YANG C, LU B, LIU S, CHEN L, JIANG L, WAN J. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2013, 126(9): 2313-2322. DOI:10.1007/s00122-013-2137-2 |
[45] |
SHIM K C, KIM S, LE A Q, LEE H S, ADEVA C, JEON Y A, LUONG N H, KIM W J, AKHTAMOV M, AHN S N. Fine mapping of a low-temperature germinability QTL qLTG1 using introgression lines derived from Oryza rufipogon[J]. Plant Breeding and Biotechnology, 2019, 7(2): 141-150. DOI:10.9787/PBB.2019.7.2.141 |
[46] |
杨梯丰, 张子怡, 董景芳, 周炼, 张少红, 刘斌, 赵均良. 水稻低温发芽力QTL qLTG3-1基因内分子标记的开发及其在华南籼稻中的应用评价[J]. 广东农业科学, 2021, 48(10): 32-41. DOI:10.16768/j.issn.1004-874X.2021.10.004 YANG T F, ZHANG Z Y, DONG J F, ZHOU L, ZHANG S H, LIU B, ZHAO J L. Development of intragenic molecular marker in QTL qLTG3-1 related to low temperature germinability of rice and evaluation of its application in Indica rice of South China[J]. Guangdong Agricultural Sciences, 2021, 48(10): 32-41. DOI:10.16768/j.issn.1004-874X.2021.10.004 |
[47] |
YANG J, YANG M, SU L, ZHOU D, HUANG C, WANG H, GUO T, CHEN Z. Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice[J]. Plant Science, 2020, 301: 110669. DOI:10.1016/j.plantsci.2020.110669 |
[48] |
ZHAN J, LU X, LIU H, ZHAO Q, YE G. Mesocotyl elongation, an essential trait for dry-seeded rice(Oryza sativa L.): A review of physiological and genetic basis[J]. Planta, 2019, 251(1): 27. DOI:10.1007/s00425-019-03322-z |
[49] |
李亚南, 严明, 冯芳君, 吴金红, 徐小艳, 范佩清, 梅捍卫. 利用重测序和集团分离分析鉴定水稻中胚轴延长相关染色体区域[J]. 上海农业学报, 2017, 33(4): 10-15. DOI:10.15955/j.issn1000-3924.2017.04.03 LI Y N, YA N M, FENG F J, WU J H, XU X Y, FAN P Q, MEI H W. Identification of chromosomal regions influencing mesocotyl elongation by bulked segregation analysis based on genome re-sequencing in rice[J]. Acta Agriculturae Shanghai, 2017, 33: 10-15. DOI:10.15955/j.issn1000-3924.2017.04.03 |
[50] |
WU J, FENG F, LIAN X, TENG X, WEI H, YU H, XIE W, YAN M, FAN P, LI Y, MA X, LIU H, YU S, WANG G, ZHOU F, LUO L, MEI H. Genome-wide association study(GWAS)of mesocotyl elongation based on re-sequencing approach in rice[J]. BMC Plant Biology, 2015, 15(1): 218. DOI:10.1186/s12870-015-0608-0 |
[51] |
LYU Y, SHAO G, JIAO G, SHENG Z, XIE L, HU S, TANG S, WEI X, HU P. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351. DOI:10.1016/j.molp.2020.11.007 |
[52] |
XIONG Q, MA B, LU X, HUANG Y H, HE S J, YANG C. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings[J]. Plant Cell, 2017, 29: 1053-1072. DOI:10.1105/tpc.16.00981 |
[53] |
SUN S, WANG T, WANG L, LI X, JIA Y, LIU C, HUANG X, XIE W, WANG X. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. DOI:10.1038/s41467-018-04952-9 |
[54] |
吴云雨, 肖宁, 余玲, 蔡跃, 潘存红, 李育红, 张小祥, 黄年生, 周长海, 季红娟, 戴正元, 李爱宏. 我国抗除草剂水稻种质创制研究进展[J]. 植物遗传资源学报, 2021, 22(4): 890-899. DOI:10.13430/j.cnki.jpgr.20201103002 WU Y Y, XIAO N, YU L, CAI Y, PANG C H, LI Y H, ZHANG X X, HUANG N S, ZHOU C H, JI H J, DAI Z Y, LI A H. Research progress in herbicide-resistant rice germplasm innovation in China[J]. Journal of Plant Genetic Resources, 2021, 22(4): 890-899. DOI:10.13430/j.cnki.jpgr.20201103002 |
[55] |
JIN M, CHEN L, DENG X W, TANG X Y. Development of herbicide resistance genes and their application in rice[J]. The Crop Journal, 2021. DOI:10.1016/j.cj.2021.05.007 |
[56] |
戴燚, 赵德刚. 抗草甘膦水稻突变体osgr-1 EPSPS基因克隆及生物信息学分析[J]. 种子, 2018, 37(3): 1-6, 11. DOI:10.16590/j.cnki.1001-4705.2018.03.001 DAI Y, ZHAO D G. Bioinformatic analysis of EPSPS gene from the rice resistant mutant osgr-1 of glyphosate[J]. Seed, 2018, 37(3): 1-6, 11. DOI:10.16590/j.cnki.1001-4705.2018.03.001 |
[57] |
王广达, 高鹏, 杨文艳, 崔傲, 赵剑华, 冯志明, 曹文磊, 陈宗祥, 左示敏. 金粳818抗咪唑啉酮类除草剂基因的功能标记开发与应用[J]. 中国水稻科学, 2020, 34(4): 316-324. DOI:10.16819/j.1001-7216.2020.9134 WANG G D, GAO P, YANG W Y, CUO A, ZHAO J H, FENG Z M, CAO W L, CHEN Z X, ZUO S M. Development and utilization of functional markers for imidazolinone herbicides resistance gene in Japonica rice variety Jinjing 818[J]. Chinese Journal of Rice Science, 2020, 34(4): 316-324. DOI:10.16819/j.1001-7216.2020.9134 |
[58] |
王芳权, 杨杰, 范方军, 李文奇, 王军, 许扬, 朱金燕, 费云燕, 仲维功水稻抗咪唑啉酮类除草剂基因ALS功能标记的开发与应用[J]. 作物学报, 2018, 44(03): 324-331. DOI:10.3724/SP.J.1006.2018.00324. WANG F Q, YANG J, FANG F J, LI W Q, WANG J, XU Y, ZHU J Y, ZHONG W G. Development and application of functional narker of for imidazolinone herbicides resistant ALS gene in rice[J]. Acta Agronomica Sinica, 2018, 44(03): 324-331. DOI:10.3724/SP.J.1006.2018.00324. |
[59] |
CHEN L, GU G, WANG C, CHEN Z, YAN W, JIN M, XIE G, ZHOU J, DENG XW, TANG X. Trp548Met mutation of acetolactate synthase in rice confers resistance to a broad spectrum of ALS-inhibiting herbicides[J]. The Crop Journal, 2021, 9(4): 750-758. DOI:10.1016/j.cj.2020.11.003 |
[60] |
毕俊国, 谭金松, 刘毅, 张安宁, 王飞名, 刘国兰, 余新桥, 罗利军. 抗咪唑啉酮类除草剂水稻种质的筛选鉴定[J]. 植物遗传资源学报, 2020, 21(4): 804-808. DOI:10.13430/j.cnki.jpgr.20191113001 BI J G, TAN J S, LIU Y, ZHANG A N, WANG F M, LIU G L, YU X Q, LUO L J. Screening and identification of rice germplasm resistant toimidazolinone herbicide[J]. Journal of Plant Genetics Resources, 2020, 21(4): 804-808. DOI:10.13430/j.cnki.jpgr.20191113001 |
[61] |
MAEDA H, MURATA K, SAKUMA N, TAKEI S, YAMAZAKI A, KARIM MR, KAWATA M, HIROSE S, KAWAGISHI-KOBAYASHI M, TANIGUCHI Y, SUZUKI S, SEKINO K, OHSHIMA M, KATO H, YOSHIDA H, TOZAWA Y. A rice gene that confers broad-spectrum resistance to β-triketone herbicides[J]. Science, 2019, 365(6451): 393-396. DOI:10.1126/science.aax0379 |
[62] |
SAGARE D B, ABBAI R, JAIN A, JAYADEVAPPA P K, DIXIT S, SINGH A K, CHALLA V, ALAM S, SINGH U M, YADAV S, SANDHU N, KABADE P G, SINGH V K, KUMAR A. More and more of less and less: Is genomics-based breeding of dry direct-seeded rice(DDSR) varieties the need of hour?[J]. Plant Biotechnology Journal, 2020, 18(11): 2173-2186. DOI:10.1111/pbi.13454 |
[63] |
LV Q, ZHANG X, YUAN D, HUANG Z, PENG R, PENG J, LI Z, TANG L, LIU D, ZHOU X, WANG L, PAN L, SHAO Y, MAO B, XIN Y, ZHU L, ZHAO B, BAI L. Exploring natural allelic variations of the β-Triketone herbicide resistance gene HIS1 for application in indica rice and particularly in two-line hybrid rice[J]. Rice, 2021, 14(1): 7. DOI:10.1186/s12284-020-00448-7 |
[64] |
李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209. DOI:10.3724/SP.J.1006.2021.02034 LI L L, MU D, YAN X, YANG L K, LIN W X, FANG C X. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.)[J]. Acta Agronomica Sinica, 2021, 47(2): 197-209. DOI:10.3724/SP.J.1006.2021.02034 |
[65] |
李迪, 周勇军, 刘小川, 余柳青, 汤富彬, 魏兴华, 郭龙彪. 中国部分稻种资源的化感控制杂草潜力评价[J]. 中国水稻科学, 2004(4): 31-36. DOI:10.3321/j.issn:1001-7216.2004.04.005 LI D, ZHOU Y J, LIU X C, YU L Q, TANG F B, WEI X H, GUO L H. Evaluation of allelopathic potential of some Chinese rice against weeds[J]. Chinese Journal of Rice Science, 2004(4): 31-36. DOI:10.3321/j.issn:1001-7216.2004.04.005 |
[66] |
张泽民, 邵德意, 梁嘉燕, 彭海峰, 陈雄辉. 化感抑草籼型两系杂交水稻新组合化两优78[J]. 杂交水稻, 2020, 35(2): 83-85. DOI:10.16267/j.cnki.1005-3956.20190325.077 ZHANG Z M, SHAO D Y, LIANG J Y, PENG H F, CHEN X H. Hualiangyou 78, a new allelopathic grass-inhibitory two-line indica hybrid rice combination[J]. Hybrid Rice, 2020, 35(2): 83-85. DOI:10.16267/j.cnki.1005-3956.20190325.077 |
[67] |
刘畅, 李来庚. 水稻抗倒伏性状的分子机理研究进展[J]. 中国水稻科学, 2016, 30(2): 216-222. DOI:10.16819/j.1001-7216.2016.5118 LIU C, LI L G. Advances in molecular understanding of rice lodging resistance[J]. Chinese Journal of Rice Science, 2016, 30(2): 216-222. DOI:10.16819/j.1001-7216.2016.5118 |
[68] |
KASHIWAGI T. Identification of quantitative trait loci for resistance to bending-type lodging in rice(Oryza sativa L.)[J]. Euphytica, 2014, 198(3): 353-367. DOI:10.1007/s10681-014-1111-7 |
[69] |
KASHIWAGI T, TOGAWA E, HIROTSU N, ISHIMARU K. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2008, 117(5): 749-757. DOI:10.1007/s00122-008-0816-1 |
[70] |
MULSANTI I W, YAMAMOTO T, UEDA T, SAMADI A F, KAMAHORA E, RUMANTI I A, THANH V C, ADACHI S, SUZUKI S, KANEKATSU M, HIRASAWA T, OOKAWA T. Finding the superior allele of japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines[J]. Rice, 2018, 11(1): 25. DOI:10.1186/s12284-018-0216-3 |
[71] |
OOKAWA T, AOBA R, YAMAMOTO T, UEDA T, TAKAI T, FUKUOKA S, ANDO T, ADACHI S, MATSUOKA M, EBITANI T, KATO Y, MULSANTI IW, KISHⅡ M, REYNOLDS M, PIÑERA F, KOTAKE T, KAWASAKI S, MOTOBAYASHI T, HIRASAWA T. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice[J]. Scientific Reports, 2016, 6(1): 30572. DOI:10.1038/srep30572 |
[72] |
OOKAWA T, HOBO T, YANO M, MURATA K, ANDO T, MIURA H, ASANO K, OCHIAI Y, IKEDA M, NISHITANI R, EBITANI T, OZAKI H, ANGELES ER, HIRASAWA T, MATSUOKA M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J]. Nature Communications, 2010, 1(1): 132. DOI:10.1038/ncomms1132 |
[73] |
OOKAWA T, INOUE K, MATSUOKA M, EBITANI T, TAKARADA T, YAMAMOTO T, UEDA T, YOKOYAMA T, SUGIYAMA C, NAKABA S, FUNADA R, KATO H, KANEKATSU M, TOYOTA K, MOTOBAYASHI T, VAZIRZANJANI M, TOJO S, HIRASAWA T. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production[J]. Scientific Reports, 2014, 4(1): 6567. DOI:10.1038/srep06567 |
[74] |
YANO K, OOKAWA T, AYA K, OCHIAI Y, HIRASAWA T, EBITANI T, TAKARADA T, YANO M, YAMAMOTO T, FUKUOKA S, WU J, ANDO T, ORDONIO R L, HIRANO K, MATSUOKA M. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism[J]. Molecular Plant, 2014. DOI:10.1093/mp/ssu131 |
[75] |
YADAV S, SINGH UM, NAIK SM, VENKATESHWARLU C, RAMAYYA PJ, RAMAN KA, SANDHU N, KUMAR A. Molecular mapping of QTLs sssociated with lodging resistance in dry direct-seeded rice(Oryza sativa L.)[J]. Frontiers in Plant Science, 2017, 8: 1431. DOI:10.3389/fpls.2017.01431 |
[76] |
JIANG M, YAMAMOTO E, YAMAMOTO T, MATSUBARA K, KATO H, ADACHI S, NOMURA T, KAMAHORA E, MA J, OOKAWA T. Mapping of QTLs associated with lodging resistance in rice(Oryza sativa L.)using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193[J]. Plant Growth Regulation, 2019, 87(2): 267-276. DOI:10.1007/s10725-018-0468-3 |
[77] |
GIRIJA R M, SATYANARAYANA P V, CHAMUNDESWARI N, RAVIKUMAR B N V S R, RAMANA R P V, PAVANI L, DEEPIKA V. Molecular breeding of "Swarna, " a mega rice variety for lodging resistance[J]. Molecular Breeding, 2019, 39(4): 55. DOI:10.1007/s11032-019-0961-z |
[78] |
SANDHU N, SUBEDI S R, SINGH V K, SINHA P, KUMAR S, SINGH S P, GHIMIRE S K, PANDEY M, YADAW R B, VARSHNEY R K, KUMAR A. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems[J]. Scientific Reports, 2019, 9(1): 9334. DOI:10.1038/s41598-019-45770-3 |
[79] |
UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J, MATSUMOTO T, TAKAI T, OKUNO K, YANO M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics, 2013, 45(9): 1097-1102. DOI:10.1038/ng.2725 |
[80] |
MONDAL S, KHAN M I R, DIXIT S, STA.CRUZ P C, SEPTININGSIH E M, ISMAIL A M. Growth, productivity and grain quality of AG1 and AG2 QTLs introgression lines under flooding in direct-seeded rice system[J]. Field Crops Research, 2020, 248: 107713. DOI:10.1016/j.fcr.2019.107713 |
[81] |
SHIN N H, HAN J H, JANG S, SONG K, KOH H J, LEE J H, YOO S, CHIN J H. Early vigor of a pyramiding line containing two quantitative trait loci, phosphorus uptake 1(Pup1)and anaerobic germination 1 (AG1)in rice(O. Sativa L.)[J]. Agriculture, 2020, 10(10): 453. DOI:10.3390/agriculture10100453 |
[82] |
SANDHU N, YADAV S, CATOLOS M, CRUZ MTS, KUMAR A. Developing climate-resilient, direct-seeded, adapted multiple-stress-tolerant rice applying genomics-assisted breeding[J]. Frontiers in Plant Science, 2021, 12: 637488. DOI:10.3389/fpls.2021.637488 |
[83] |
蔡明, 刘国权. 澳大利亚水稻生产现状与发展趋势[J]. 现代化农业, 2005(2): 4-5. DOI:10.3969/j.issn.1001-0254.2005.02.005 CAI M, LIU G Q. Current status and development trend of rice production in Australia[J]. Modern Agriculture, 2005(2): 4-5. DOI:10.3969/j.issn.1001-0254.2005.02.005 |
[84] |
金千瑜. 韩国的直播稻生产与技术[J]. 世界农业, 1997(9): 16-18. JIN Q Y. Production and technology of direct-seeding rice in South Korea[J]. World Agriculture, 1997(9): 16-18. |
[85] |
章清杞, 蔡来龙, 黄荣华, 程祖锌. 直播稻栽培技术研究进展[J]. 亚热带农业研究, 2020, 16(1): 1-7. DOI:10.13321/j.cnki.subtrop.agric.res.2020.01.001 ZHANG Q Q, CAI L L, HUANG R H, CHENG Z X.. Research progress of direct seeding rice cultivation techniques[J]. Subtropical Agriculture Research, 2020, 16(1): 1-7. DOI:10.13321/j.cnki.subtrop.agric.res.2020.01.001 |
[86] |
彭碧琳, 胡香玉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 梁开明, 刘彦卓, 傅友强. 华南双季直播稻品种筛选及其产量形成特征研究[J]. 中国稻米, 2019, 25(5): 47-52. DOI:10.3969/j.issn.1006-8082.2019.05.010 PENG B L, HU X Y, ZHONG X H, TIAN K, HUANG N R, PAN J F, LIANG K M, LIU Y Z, FU Y Q. Selection and yield formation characteristics of double-cropping and direct seeding rice in South China[J]. China Rice, 2019, 25(5): 47-52. DOI:10.3969/j.issn.1006-8082.2019.05.010 |
[87] |
王楚桃, 李贤勇, 蒋刚, 朱子超, 欧阳杰, 何永歆. 耐低温淹水发芽的水稻不育系神9A选育与应用[J]. 杂交水稻, 2019, 34(1): 22-24. DOI:10.16267/j.cnki.1005-3956.20180611.170 WANG C T, LI X Y, JIANG G, ZHU Z C, OU Y J, HE Y X. Breeding and application of rice sterile line Shen 9A that can tolerate low temperature and flooding[J]. Hybrid Rice, 2019, 34(1): 22-24. DOI:10.16267/j.cnki.1005-3956.20180611.170 |
[88] |
王宝祥, 卢百关, 潘启明, 徐大勇. 黄淮稻区水稻直播研究进展及育种策略探讨[J]. 北方农业学报, 2017, 45(5): 1-5. DOI:10.3969/j.issn.2096-1197.2017.05.01 WANG B, LU B G, PAN Q M, XU D Y. Research progress in breeding level of direct-seeding rice and breeding strategy in the Huang and Huai Valley[J]. Journal of Northern Agriculture, 2017, 45(5): 1-5. DOI:10.3969/j.issn.2096-1197.2017.05.01 |
[89] |
WENEFRIDA H S, UTOMO M M, MECHE J L. Nash, inheritance of herbicide resistance in two germplasm lines of Clearfield rice(Oryza sativa L.)[J]. Canadian Journal of Plant Science, 2007, 87: 659-669. DOI:10.4141/P05-086 |
[90] |
SUDIANTO E, KAH S B, XIANG N T, SALDAIN N E, SCOTT R C, BURGOS N R. Clearfield® rice: its development, success, and key challenges on a global perspective[J]. Crop Protection, 2014, 49: 40. DOI:10.1007/s10681-019-2407-4 |
[91] |
TOLEDO A M U, IGNACIO J C I, CASAL C, GONZAGA Z J, MENDIORO M S, SEPTININGSIH E M. Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions[J]. Plant Breeding and Biotechnology, 2015, 3(2): 77-87. DOI:10.9787/PBB.2015.3.2.077 |
[92] |
ALAM R, HUMMEL M, YEUNG E, LOCKE A M, IGNACIO J C I, BALTAZAR M D, JIA Z, ISMAIL A M, SEPTININGSIH E M, BAILEY-SERRES J. Flood resilience loci SUBMERGENCE 1 and ANAEROBIC GERMINATION 1 interact in seedlings established underwater[J]. Plant Direct, 2020, 4(7): e00240. DOI:10.1002/pld3.240 |
[93] |
KIM S M, KIM C S, JEONG J U, REINKE R F, JEONG J M. Marker-assisted breeding for improvement of anaerobic germination in japonica rice(Oryza sativa)[J]. Plant Breeding, 2019, 138(6): 810-819. DOI:10.1111/pbr.12719 |
[94] |
KASHIWAGI T, TOGAWA E, HIROTSU N, ISHIMARU K. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2008, 117(5): 749-757. DOI:10.1007/s00122-008-0816-1 |
[95] |
WANG M, WANG Z, MAO Y, LU Y, YANG R, TAO X, ZHU J K. Optimizing base editors for improved efficiency and expanded editing scope in rice[J]. Plant Biotechnology Journal, 2019, 17(9): 1697-1699. DOI:10.1111/pbi.13124 |
[96] |
LI J, MENG X, ZONG Y, CHEN K, ZHANG H, LIU J, LI J, GAO C. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9[J]. Nature Plants, 2016, 2(10): 16139. DOI:10.1038/nplants.2016.139 |
[97] |
WANG F, XU Y, LI W, CHEN Z, WANG J, FAN F, TAO Y, JIANG Y, ZHU Q H, YANG J. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing[J]. The Crop Journal, 2021, 9(2): 305-312. DOI:10.1016/j.cj.2020.06.001 |
[98] |
SUN Y, ZHANG X, WU C, HE Y, MA Y, HOU H, GUO X, DU W, ZHAO Y, XIA L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant, 2016, 9(4): 628-631. DOI:10.1016/j.molp.2016.01.001 |
[99] |
KUANG Y, LI S, REN B, YAN F, SPETZ C, LI X, ZHOU X, ZHOU H. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Molecular Plant, 2020, 13(4): 565-572. DOI:10.1016/j.molp.2020.01.010 |
[100] |
RAO A N, JOHNSON D E, SIVAPRASAD B, LADHA J K, MORTIMER A M. Weed management in direct‐seeded rice[J]. Advances in Agronomy, 2007, 93: 153-255. DOI:10.1016/S0065-2113(06)93004-1 |
[101] |
周延彪, 秦鹏, 赵新辉, 杨远柱. 抗除草剂水稻种质资源研究进展[J]. 杂交水稻, 2019, 34(1): 1-5. DOI:10.16267/j.cnki.1005-3956.20180301.062 ZHOU Y B, QIN P, ZHAO X H, YANG Y Z. Research progress of herbicide-resistant rice genetic resources[J]. Hybrid Rice, 2019, 34(1): 1-5. DOI:10.16267/j.cnki.1005-3956.20180301.062 |
[102] |
严田蓉, 何艳, 唐源, 彭志芸, 马鹏, 余华清, 丁峰, 王春雨, 孙永健, 杨志远, 马均. 缓释尿素与普通尿素配施对直播杂交籼稻叶片生长及产量的影响[J]. 植物营养与肥料学报, 2019, 25(5): 729-740. DOI:10.11674/zwyf.18194.zwyf.18194 YAN T R, HE Y, TANG Y, PENG Z Y, MA P, YU H Q, DING F, WANG C Y, SUN Y J, YANG Z Y, MA J. Effects of slow-release urea combined with conventional urea on leaf growth and yield formation of indica hybrid rice under direct seeding cultivation[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 729. DOI:10.11674/zwyf.18194.zwyf.18194 |
[103] |
王丰. 杂交水稻育种成就与展望——广东省农业科学院杂交水稻研究50年回顾[J]. 广东农业科学, 2020, 47(12): 1-11. DOI:10.16768/j.issn.1004-874X.2020.12.001 WANG F. Achievements and prospects of hybrid rice breeding - Review of 50 years of hybrid rice research of Guangdong Academy of Agricultural Sciences[J]. Guangdong Agricultural Sciences, 2020, 47(12): 1-11. DOI:10.16768/j.issn.1004-874X.2020.12.001 |
(责任编辑 邹移光)