文章摘要
李西明,赵泽勇,吴精乙,黄永鼎,高月芳,温嘉勇.图像分割算法在肉鸡深度图集上的研究[J].广东农业科学,2022,49(1):159-166
查看全文    HTML 图像分割算法在肉鸡深度图集上的研究
Research on Image Segmentation Algorithms on Broiler Depth Atlas
  
DOI:10.16768/j.issn.1004-874X.2022.01.019
中文关键词: 图像识别  图像分割  深度学习  深度图像  神经网络模型
英文关键词: image recognition  image segmentation  deep learning  depth map  Neural network model
基金项目:国家自然科学基金(61702196)
作者单位
李西明,赵泽勇,吴精乙,黄永鼎,高月芳,温嘉勇  
摘要点击次数: 1442
全文下载次数: 994
中文摘要:
      【目的】针对在复杂环境背景中难以识别分割多只肉鸡的问题,探讨基于深度学习实现对多只肉 鸡深度图像分割的方法。【方法】利用深度相机,通过不同的拍摄角度(俯视、正视、侧视)在自然环境下采 集肉鸡不同姿势(站立、俯卧、抬头、低头等)形态的深度图像,并使用 CVAT 标注软件对深度图像进行精确 标注,建立肉鸡深度图数据集(含 4 058 张深度图像)。利用 FCN、U-Net、PSPNet、DeepLab 和 Mask R-CNN 等 5 种神经网络实现肉鸡深度图像的识别与分割,根据测试集得到预测结果,比较与评估不同模型的性能,实 现对肉鸡深度图像的识别与分割。【结果】基于 Mask R-CNN 神经网络模型的识别分割准确率为 98.96%,召回 率为 97.78%,调和平均数为 95.03%,交并比为 94.69%,4 个指标值均为 5 个模型中的最优值。【结论】基于 Mask R-CNN 神经网络的算法简单快速,且能准确实现肉鸡的自动识别与分割,对肉鸡遮挡有较佳的鲁棒性,基 本可以满足养殖场鸡群均匀度预测的识别分割要求。促进了计算机视觉在现代农业的应用,可为鸡群计数、鸡 群均匀度预测以及肉鸡福利饲养等鸡场作业提供理论和实践基础。
英文摘要:
      【Objective】Aiming at the difficulty in recognizing and segmenting multiple broilers in complex environment, a segmentation method for depth map of multiple broilers based on deep learning was explored. 【Method】By using the depth camera, the depth map of broilers in different postures(standing, prone, looking up, looking down, etc.)were collected in the natural environment through different shooting angles(top, front and side), and the depth map were accurately marked by CVAT labeling software. A broiler depth map dataset was established, with a total of 4 058 depth maps. Five neural networks, including FCN, U-NET, PSPNet, DeepLab and Mask R-CNN, were used to recognize and segment broiler depth maps. Based on the predicted results of test sets, the performance of different models were compared and evaluated to realize the recognition and segmentation of broiler depth maps.【Result】The recognition and segmentation accuracy of Mask R-CNN neural network model is 98.96%, the recall rate is 97.78%, the F1 score is 95.03%, and the intersection-overunion is 94.69%, all of which are the optimal values of the five models.【Conclusion】The algorithm based on Mask R-CNN is simple and fast, and it can realize the automatic recognition and segmentation of broilers accurately and has good robustness to the shielding of broilers, which can basically meet the recognition and segmentation requirements for the prediction of the evenness of chicken flocks in the chicken farm. It promotes the application of computer vision in modern agriculture, and provides theoretical and practical bases for chicken farm operations such as flock counting, flock evenness prediction and welfare breeding of broilers.
  查看/发表评论  下载PDF阅读器

手机扫一扫看